grafana/public/app/core/logs_model.test.ts
Torkel Ödegaard 6bdc9fac45
Decimals: Big Improvements to auto decimals and fixes to auto decimals bug found in 7.4-beta1 (#30519)
* Decimals: Nukes scaledDecimals from the earth it was an abomination

* Moved move tests

* Fixed test

* Updated tests

* Updated test
2021-01-22 16:37:56 +01:00

718 lines
19 KiB
TypeScript

import {
DataFrame,
FieldType,
LogLevel,
LogRowModel,
LogsDedupStrategy,
LogsMetaKind,
MutableDataFrame,
toDataFrame,
} from '@grafana/data';
import { dataFrameToLogsModel, dedupLogRows, getSeriesProperties, logSeriesToLogsModel } from './logs_model';
describe('dedupLogRows()', () => {
test('should return rows as is when dedup is set to none', () => {
const rows: LogRowModel[] = [
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
] as any;
expect(dedupLogRows(rows, LogsDedupStrategy.none)).toMatchObject(rows);
});
test('should dedup on exact matches', () => {
const rows: LogRowModel[] = [
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'INFO test 2.44 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
] as any;
expect(dedupLogRows(rows, LogsDedupStrategy.exact)).toEqual([
{
duplicates: 1,
entry: 'WARN test 1.23 on [xxx]',
},
{
duplicates: 0,
entry: 'INFO test 2.44 on [xxx]',
},
{
duplicates: 0,
entry: 'WARN test 1.23 on [xxx]',
},
]);
});
test('should dedup on number matches', () => {
const rows: LogRowModel[] = [
{
entry: 'WARN test 1.2323423 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'INFO test 2.44 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
] as any;
expect(dedupLogRows(rows, LogsDedupStrategy.numbers)).toEqual([
{
duplicates: 1,
entry: 'WARN test 1.2323423 on [xxx]',
},
{
duplicates: 0,
entry: 'INFO test 2.44 on [xxx]',
},
{
duplicates: 0,
entry: 'WARN test 1.23 on [xxx]',
},
]);
});
test('should dedup on signature matches', () => {
const rows: LogRowModel[] = [
{
entry: 'WARN test 1.2323423 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'INFO test 2.44 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
] as any;
expect(dedupLogRows(rows, LogsDedupStrategy.signature)).toEqual([
{
duplicates: 3,
entry: 'WARN test 1.2323423 on [xxx]',
},
]);
});
test('should return to non-deduped state on same log result', () => {
const rows: LogRowModel[] = [
{
entry: 'INFO 123',
},
{
entry: 'WARN 123',
},
{
entry: 'WARN 123',
},
] as any;
expect(dedupLogRows(rows, LogsDedupStrategy.exact)).toEqual([
{
duplicates: 0,
entry: 'INFO 123',
},
{
duplicates: 1,
entry: 'WARN 123',
},
]);
expect(dedupLogRows(rows, LogsDedupStrategy.none)).toEqual(rows);
});
});
const emptyLogsModel: any = {
hasUniqueLabels: false,
rows: [],
meta: [],
series: [],
};
describe('dataFrameToLogsModel', () => {
it('given empty series should return empty logs model', () => {
expect(dataFrameToLogsModel([] as DataFrame[], 0, 'utc')).toMatchObject(emptyLogsModel);
});
it('given series without correct series name should return empty logs model', () => {
const series: DataFrame[] = [
toDataFrame({
fields: [],
}),
];
expect(dataFrameToLogsModel(series, 0, 'utc')).toMatchObject(emptyLogsModel);
});
it('given series without a time field should return empty logs model', () => {
const series: DataFrame[] = [
new MutableDataFrame({
fields: [
{
name: 'message',
type: FieldType.string,
values: [],
},
],
}),
];
expect(dataFrameToLogsModel(series, 0, 'utc')).toMatchObject(emptyLogsModel);
});
it('given series without a string field should return empty logs model', () => {
const series: DataFrame[] = [
new MutableDataFrame({
fields: [
{
name: 'time',
type: FieldType.time,
values: [],
},
],
}),
];
expect(dataFrameToLogsModel(series, 0, 'utc')).toMatchObject(emptyLogsModel);
});
it('given one series should return expected logs model', () => {
const series: DataFrame[] = [
new MutableDataFrame({
fields: [
{
name: 'time',
type: FieldType.time,
values: ['2019-04-26T09:28:11.352440161Z', '2019-04-26T14:42:50.991981292Z'],
},
{
name: 'message',
type: FieldType.string,
values: [
't=2019-04-26T11:05:28+0200 lvl=info msg="Initializing DatasourceCacheService" logger=server',
't=2019-04-26T16:42:50+0200 lvl=eror msg="new token…t unhashed token=56d9fdc5c8b7400bd51b060eea8ca9d7',
],
labels: {
filename: '/var/log/grafana/grafana.log',
job: 'grafana',
},
},
{
name: 'id',
type: FieldType.string,
values: ['foo', 'bar'],
},
],
meta: {
limit: 1000,
},
}),
];
const logsModel = dataFrameToLogsModel(series, 1, 'utc');
expect(logsModel.hasUniqueLabels).toBeFalsy();
expect(logsModel.rows).toHaveLength(2);
expect(logsModel.rows).toMatchObject([
{
entry: 't=2019-04-26T11:05:28+0200 lvl=info msg="Initializing DatasourceCacheService" logger=server',
labels: { filename: '/var/log/grafana/grafana.log', job: 'grafana' },
logLevel: 'info',
uniqueLabels: {},
uid: 'foo',
},
{
entry: 't=2019-04-26T16:42:50+0200 lvl=eror msg="new token…t unhashed token=56d9fdc5c8b7400bd51b060eea8ca9d7',
labels: { filename: '/var/log/grafana/grafana.log', job: 'grafana' },
logLevel: 'error',
uniqueLabels: {},
uid: 'bar',
},
]);
expect(logsModel.series).toHaveLength(2);
expect(logsModel.meta).toHaveLength(2);
expect(logsModel.meta![0]).toMatchObject({
label: 'Common labels',
value: series[0].fields[1].labels,
kind: LogsMetaKind.LabelsMap,
});
expect(logsModel.meta![1]).toMatchObject({
label: 'Limit',
value: `1000 (2 returned)`,
kind: LogsMetaKind.String,
});
});
it('given one series with error should return expected logs model', () => {
const series: DataFrame[] = [
new MutableDataFrame({
fields: [
{
name: 'time',
type: FieldType.time,
values: ['2019-04-26T09:28:11.352440161Z', '2019-04-26T14:42:50.991981292Z'],
},
{
name: 'message',
type: FieldType.string,
values: [
't=2019-04-26T11:05:28+0200 lvl=info msg="Initializing DatasourceCacheService" logger=server',
't=2019-04-26T16:42:50+0200 lvl=eror msg="new token…t unhashed token=56d9fdc5c8b7400bd51b060eea8ca9d7',
],
labels: {
filename: '/var/log/grafana/grafana.log',
job: 'grafana',
__error__: 'Failed while parsing',
},
},
{
name: 'id',
type: FieldType.string,
values: ['foo', 'bar'],
},
],
meta: {
limit: 1000,
custom: {
error: 'Error when parsing some of the logs',
},
},
}),
];
const logsModel = dataFrameToLogsModel(series, 1, 'utc');
expect(logsModel.hasUniqueLabels).toBeFalsy();
expect(logsModel.rows).toHaveLength(2);
expect(logsModel.rows).toMatchObject([
{
entry: 't=2019-04-26T11:05:28+0200 lvl=info msg="Initializing DatasourceCacheService" logger=server',
labels: { filename: '/var/log/grafana/grafana.log', job: 'grafana', __error__: 'Failed while parsing' },
logLevel: 'info',
uniqueLabels: {},
uid: 'foo',
},
{
entry: 't=2019-04-26T16:42:50+0200 lvl=eror msg="new token…t unhashed token=56d9fdc5c8b7400bd51b060eea8ca9d7',
labels: { filename: '/var/log/grafana/grafana.log', job: 'grafana', __error__: 'Failed while parsing' },
logLevel: 'error',
uniqueLabels: {},
uid: 'bar',
},
]);
expect(logsModel.series).toHaveLength(2);
expect(logsModel.meta).toHaveLength(3);
expect(logsModel.meta![0]).toMatchObject({
label: 'Common labels',
value: series[0].fields[1].labels,
kind: LogsMetaKind.LabelsMap,
});
expect(logsModel.meta![1]).toMatchObject({
label: 'Limit',
value: `1000 (2 returned)`,
kind: LogsMetaKind.String,
});
expect(logsModel.meta![2]).toMatchObject({
label: '',
value: 'Error when parsing some of the logs',
kind: LogsMetaKind.Error,
});
});
it('given one series without labels should return expected logs model', () => {
const series: DataFrame[] = [
new MutableDataFrame({
fields: [
{
name: 'time',
type: FieldType.time,
values: ['1970-01-01T00:00:01Z'],
},
{
name: 'message',
type: FieldType.string,
values: ['WARN boooo'],
},
{
name: 'level',
type: FieldType.string,
values: ['dbug'],
},
],
}),
];
const logsModel = dataFrameToLogsModel(series, 1, 'utc');
expect(logsModel.rows).toHaveLength(1);
expect(logsModel.rows).toMatchObject([
{
entry: 'WARN boooo',
labels: {},
logLevel: LogLevel.debug,
uniqueLabels: {},
},
]);
});
it('given multiple series with unique times should return expected logs model', () => {
const series: DataFrame[] = [
toDataFrame({
fields: [
{
name: 'ts',
type: FieldType.time,
values: ['1970-01-01T00:00:01Z'],
},
{
name: 'line',
type: FieldType.string,
values: ['WARN boooo'],
labels: {
foo: 'bar',
baz: '1',
level: 'dbug',
},
},
{
name: 'id',
type: FieldType.string,
values: ['0'],
},
],
}),
toDataFrame({
name: 'logs',
fields: [
{
name: 'time',
type: FieldType.time,
values: ['1970-01-01T00:00:00Z', '1970-01-01T00:00:02Z'],
},
{
name: 'message',
type: FieldType.string,
values: ['INFO 1', 'INFO 2'],
labels: {
foo: 'bar',
baz: '2',
level: 'err',
},
},
{
name: 'id',
type: FieldType.string,
values: ['1', '2'],
},
],
}),
];
const logsModel = dataFrameToLogsModel(series, 1, 'utc');
expect(logsModel.hasUniqueLabels).toBeTruthy();
expect(logsModel.rows).toHaveLength(3);
expect(logsModel.rows).toMatchObject([
{
entry: 'INFO 1',
labels: { foo: 'bar', baz: '2' },
logLevel: LogLevel.error,
uniqueLabels: { baz: '2' },
},
{
entry: 'WARN boooo',
labels: { foo: 'bar', baz: '1' },
logLevel: LogLevel.debug,
uniqueLabels: { baz: '1' },
},
{
entry: 'INFO 2',
labels: { foo: 'bar', baz: '2' },
logLevel: LogLevel.error,
uniqueLabels: { baz: '2' },
},
]);
expect(logsModel.series).toHaveLength(2);
expect(logsModel.meta).toHaveLength(1);
expect(logsModel.meta![0]).toMatchObject({
label: 'Common labels',
value: {
foo: 'bar',
},
kind: LogsMetaKind.LabelsMap,
});
});
it('given multiple series with equal times should return expected logs model', () => {
const series: DataFrame[] = [
toDataFrame({
fields: [
{
name: 'ts',
type: FieldType.time,
values: ['1970-01-01T00:00:00Z'],
},
{
name: 'line',
type: FieldType.string,
values: ['WARN boooo 1'],
labels: {
foo: 'bar',
baz: '1',
level: 'dbug',
},
},
{
name: 'id',
type: FieldType.string,
values: ['0'],
},
],
}),
toDataFrame({
fields: [
{
name: 'ts',
type: FieldType.time,
values: ['1970-01-01T00:00:01Z'],
},
{
name: 'line',
type: FieldType.string,
values: ['WARN boooo 2'],
labels: {
foo: 'bar',
baz: '2',
level: 'dbug',
},
},
{
name: 'id',
type: FieldType.string,
values: ['1'],
},
],
}),
toDataFrame({
name: 'logs',
fields: [
{
name: 'time',
type: FieldType.time,
values: ['1970-01-01T00:00:00Z', '1970-01-01T00:00:01Z'],
},
{
name: 'message',
type: FieldType.string,
values: ['INFO 1', 'INFO 2'],
labels: {
foo: 'bar',
baz: '2',
level: 'err',
},
},
{
name: 'id',
type: FieldType.string,
values: ['2', '3'],
},
],
}),
];
const logsModel = dataFrameToLogsModel(series, 1, 'utc');
expect(logsModel.hasUniqueLabels).toBeTruthy();
expect(logsModel.rows).toHaveLength(4);
expect(logsModel.rows).toMatchObject([
{
entry: 'WARN boooo 1',
labels: { foo: 'bar', baz: '1' },
logLevel: LogLevel.debug,
uniqueLabels: { baz: '1' },
},
{
entry: 'INFO 1',
labels: { foo: 'bar', baz: '2' },
logLevel: LogLevel.error,
uniqueLabels: { baz: '2' },
},
{
entry: 'WARN boooo 2',
labels: { foo: 'bar', baz: '2' },
logLevel: LogLevel.debug,
uniqueLabels: { baz: '2' },
},
{
entry: 'INFO 2',
labels: { foo: 'bar', baz: '2' },
logLevel: LogLevel.error,
uniqueLabels: { baz: '2' },
},
]);
});
it('should fallback to row index if no id', () => {
const series: DataFrame[] = [
toDataFrame({
labels: { foo: 'bar' },
fields: [
{
name: 'ts',
type: FieldType.time,
values: ['1970-01-01T00:00:00Z'],
},
{
name: 'line',
type: FieldType.string,
values: ['WARN boooo 1'],
},
],
}),
];
const logsModel = dataFrameToLogsModel(series, 1, 'utc');
expect(logsModel.rows[0].uid).toBe('0');
});
});
describe('logSeriesToLogsModel', () => {
it('should return correct metaData even if the data is empty', () => {
const logSeries: DataFrame[] = [
{
fields: [],
length: 0,
refId: 'A',
meta: {
searchWords: ['test'],
limit: 1000,
stats: [{ displayName: 'Summary: total bytes processed', value: 97048, unit: 'decbytes' }],
custom: { lokiQueryStatKey: 'Summary: total bytes processed' },
preferredVisualisationType: 'logs',
},
},
];
const metaData = {
hasUniqueLabels: false,
meta: [
{ label: 'Limit', value: '1000 (0 returned)', kind: 1 },
{ label: 'Total bytes processed', value: '97.0 kB', kind: 1 },
],
rows: [],
};
expect(logSeriesToLogsModel(logSeries)).toMatchObject(metaData);
});
it('should return correct metaData when some data frames have empty fields', () => {
const logSeries: DataFrame[] = [
toDataFrame({
fields: [
{
name: 'ts',
type: FieldType.time,
values: ['1970-01-01T00:00:01Z', '1970-02-01T00:00:01Z', '1970-03-01T00:00:01Z'],
},
{
name: 'line',
type: FieldType.string,
values: ['WARN boooo 0', 'WARN boooo 1', 'WARN boooo 2'],
labels: {
foo: 'bar',
level: 'dbug',
},
},
{
name: 'id',
type: FieldType.string,
values: ['0', '1', '2'],
},
],
refId: 'A',
meta: {
searchWords: ['test'],
limit: 1000,
stats: [{ displayName: 'Summary: total bytes processed', value: 97048, unit: 'decbytes' }],
custom: { lokiQueryStatKey: 'Summary: total bytes processed' },
preferredVisualisationType: 'logs',
},
}),
toDataFrame({
fields: [],
length: 0,
refId: 'B',
meta: {
searchWords: ['test'],
limit: 1000,
stats: [{ displayName: 'Summary: total bytes processed', value: 97048, unit: 'decbytes' }],
custom: { lokiQueryStatKey: 'Summary: total bytes processed' },
preferredVisualisationType: 'logs',
},
}),
];
const logsModel = dataFrameToLogsModel(logSeries, 0, 'utc');
expect(logsModel.meta).toMatchObject([
{ kind: 2, label: 'Common labels', value: { foo: 'bar', level: 'dbug' } },
{ kind: 1, label: 'Limit', value: '2000 (3 returned)' },
{ kind: 1, label: 'Total bytes processed', value: '194 kB' },
]);
expect(logsModel.rows).toHaveLength(3);
expect(logsModel.rows).toMatchObject([
{
entry: 'WARN boooo 0',
labels: { foo: 'bar' },
logLevel: LogLevel.debug,
},
{
entry: 'WARN boooo 1',
labels: { foo: 'bar' },
logLevel: LogLevel.debug,
},
{
entry: 'WARN boooo 2',
labels: { foo: 'bar' },
logLevel: LogLevel.debug,
},
]);
});
});
describe('getSeriesProperties()', () => {
it('sets a minimum bucket size', () => {
const result = getSeriesProperties([], 2, undefined, 3, 123);
expect(result.bucketSize).toBe(123);
});
it('does not adjust the bucketSize if there is no range', () => {
const result = getSeriesProperties([], 30, undefined, 70);
expect(result.bucketSize).toBe(2100);
});
it('does not adjust the bucketSize if the logs row times match the given range', () => {
const rows: LogRowModel[] = [
{ entry: 'foo', timeEpochMs: 10 },
{ entry: 'bar', timeEpochMs: 20 },
] as any;
const range = { from: 10, to: 20 };
const result = getSeriesProperties(rows, 1, range, 2, 1);
expect(result.bucketSize).toBe(2);
expect(result.visibleRange).toMatchObject(range);
});
it('clamps the range and adjusts the bucketSize if the logs row times do not completely cover the given range', () => {
const rows: LogRowModel[] = [
{ entry: 'foo', timeEpochMs: 10 },
{ entry: 'bar', timeEpochMs: 20 },
] as any;
const range = { from: 0, to: 30 };
const result = getSeriesProperties(rows, 3, range, 2, 1);
// Bucketsize 6 gets shortened to 4 because of new visible range is 20ms vs original range being 30ms
expect(result.bucketSize).toBe(4);
// From time is also aligned to bucketSize (divisible by 4)
expect(result.visibleRange).toMatchObject({ from: 8, to: 30 });
});
});