mirror of
https://github.com/grafana/grafana.git
synced 2024-11-30 20:54:22 -06:00
506 lines
16 KiB
Go
506 lines
16 KiB
Go
package prometheus
|
|
|
|
import (
|
|
"context"
|
|
"encoding/json"
|
|
"fmt"
|
|
"math"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"time"
|
|
|
|
"github.com/grafana/grafana-plugin-sdk-go/backend"
|
|
"github.com/grafana/grafana-plugin-sdk-go/data"
|
|
"github.com/grafana/grafana/pkg/tsdb/intervalv2"
|
|
"github.com/opentracing/opentracing-go"
|
|
apiv1 "github.com/prometheus/client_golang/api/prometheus/v1"
|
|
"github.com/prometheus/common/model"
|
|
)
|
|
|
|
//Internal interval and range variables
|
|
const (
|
|
varInterval = "$__interval"
|
|
varIntervalMs = "$__interval_ms"
|
|
varRange = "$__range"
|
|
varRangeS = "$__range_s"
|
|
varRangeMs = "$__range_ms"
|
|
varRateInterval = "$__rate_interval"
|
|
)
|
|
|
|
//Internal interval and range variables with {} syntax
|
|
//Repetitive code, we should have functionality to unify these
|
|
const (
|
|
varIntervalAlt = "${__interval}"
|
|
varIntervalMsAlt = "${__interval_ms}"
|
|
varRangeAlt = "${__range}"
|
|
varRangeSAlt = "${__range_s}"
|
|
varRangeMsAlt = "${__range_ms}"
|
|
varRateIntervalAlt = "${__rate_interval}"
|
|
)
|
|
|
|
type TimeSeriesQueryType string
|
|
|
|
const (
|
|
RangeQueryType TimeSeriesQueryType = "range"
|
|
InstantQueryType TimeSeriesQueryType = "instant"
|
|
ExemplarQueryType TimeSeriesQueryType = "exemplar"
|
|
)
|
|
|
|
func (s *Service) executeTimeSeriesQuery(ctx context.Context, req *backend.QueryDataRequest, dsInfo *DatasourceInfo) (*backend.QueryDataResponse, error) {
|
|
client := dsInfo.promClient
|
|
|
|
result := backend.QueryDataResponse{
|
|
Responses: backend.Responses{},
|
|
}
|
|
|
|
queries, err := s.parseTimeSeriesQuery(req, dsInfo)
|
|
if err != nil {
|
|
return &result, err
|
|
}
|
|
|
|
for _, query := range queries {
|
|
plog.Debug("Sending query", "start", query.Start, "end", query.End, "step", query.Step, "query", query.Expr)
|
|
|
|
span, ctx := opentracing.StartSpanFromContext(ctx, "datasource.prometheus")
|
|
span.SetTag("expr", query.Expr)
|
|
span.SetTag("start_unixnano", query.Start.UnixNano())
|
|
span.SetTag("stop_unixnano", query.End.UnixNano())
|
|
defer span.Finish()
|
|
|
|
response := make(map[TimeSeriesQueryType]interface{})
|
|
|
|
timeRange := apiv1.Range{
|
|
Step: query.Step,
|
|
// Align query range to step. It rounds start and end down to a multiple of step.
|
|
Start: time.Unix(int64(math.Floor((float64(query.Start.Unix()+query.UtcOffsetSec)/query.Step.Seconds()))*query.Step.Seconds()-float64(query.UtcOffsetSec)), 0),
|
|
End: time.Unix(int64(math.Floor((float64(query.End.Unix()+query.UtcOffsetSec)/query.Step.Seconds()))*query.Step.Seconds()-float64(query.UtcOffsetSec)), 0),
|
|
}
|
|
|
|
if query.RangeQuery {
|
|
rangeResponse, _, err := client.QueryRange(ctx, query.Expr, timeRange)
|
|
if err != nil {
|
|
plog.Error("Range query failed", "query", query.Expr, "err", err)
|
|
result.Responses[query.RefId] = backend.DataResponse{Error: err}
|
|
continue
|
|
}
|
|
response[RangeQueryType] = rangeResponse
|
|
}
|
|
|
|
if query.InstantQuery {
|
|
instantResponse, _, err := client.Query(ctx, query.Expr, query.End)
|
|
if err != nil {
|
|
plog.Error("Instant query failed", "query", query.Expr, "err", err)
|
|
result.Responses[query.RefId] = backend.DataResponse{Error: err}
|
|
continue
|
|
}
|
|
response[InstantQueryType] = instantResponse
|
|
}
|
|
|
|
// This is a special case
|
|
// If exemplar query returns error, we want to only log it and continue with other results processing
|
|
if query.ExemplarQuery {
|
|
exemplarResponse, err := client.QueryExemplars(ctx, query.Expr, timeRange.Start, timeRange.End)
|
|
if err != nil {
|
|
plog.Error("Exemplar query failed", "query", query.Expr, "err", err)
|
|
} else {
|
|
response[ExemplarQueryType] = exemplarResponse
|
|
}
|
|
}
|
|
|
|
frames, err := parseTimeSeriesResponse(response, query)
|
|
if err != nil {
|
|
return &result, err
|
|
}
|
|
|
|
result.Responses[query.RefId] = backend.DataResponse{
|
|
Frames: frames,
|
|
}
|
|
}
|
|
|
|
return &result, nil
|
|
}
|
|
|
|
func formatLegend(metric model.Metric, query *PrometheusQuery) string {
|
|
var legend string
|
|
|
|
if query.LegendFormat == "" {
|
|
legend = metric.String()
|
|
} else {
|
|
result := legendFormat.ReplaceAllFunc([]byte(query.LegendFormat), func(in []byte) []byte {
|
|
labelName := strings.Replace(string(in), "{{", "", 1)
|
|
labelName = strings.Replace(labelName, "}}", "", 1)
|
|
labelName = strings.TrimSpace(labelName)
|
|
if val, exists := metric[model.LabelName(labelName)]; exists {
|
|
return []byte(val)
|
|
}
|
|
return []byte{}
|
|
})
|
|
legend = string(result)
|
|
}
|
|
|
|
// If legend is empty brackets, use query expression
|
|
if legend == "{}" {
|
|
legend = query.Expr
|
|
}
|
|
|
|
return legend
|
|
}
|
|
|
|
func (s *Service) parseTimeSeriesQuery(queryContext *backend.QueryDataRequest, dsInfo *DatasourceInfo) ([]*PrometheusQuery, error) {
|
|
qs := []*PrometheusQuery{}
|
|
for _, query := range queryContext.Queries {
|
|
model := &QueryModel{}
|
|
err := json.Unmarshal(query.JSON, model)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
//Final interval value
|
|
var interval time.Duration
|
|
|
|
//Calculate interval
|
|
queryInterval := model.Interval
|
|
//If we are using variable or interval/step, we will replace it with calculated interval
|
|
if queryInterval == varInterval || queryInterval == varIntervalMs || queryInterval == varRateInterval {
|
|
queryInterval = ""
|
|
}
|
|
//If we are using variable or interval/step with {} syntax, we will replace it with calculated interval
|
|
//Repetitive code, we should have functionality to unify these
|
|
if queryInterval == varIntervalAlt || queryInterval == varIntervalMsAlt || queryInterval == varRateIntervalAlt {
|
|
queryInterval = ""
|
|
}
|
|
|
|
minInterval, err := intervalv2.GetIntervalFrom(dsInfo.TimeInterval, queryInterval, model.IntervalMS, 15*time.Second)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
calculatedInterval := s.intervalCalculator.Calculate(query.TimeRange, minInterval, query.MaxDataPoints)
|
|
safeInterval := s.intervalCalculator.CalculateSafeInterval(query.TimeRange, int64(safeRes))
|
|
adjustedInterval := safeInterval.Value
|
|
|
|
if calculatedInterval.Value > safeInterval.Value {
|
|
adjustedInterval = calculatedInterval.Value
|
|
}
|
|
|
|
if queryInterval == varRateInterval || queryInterval == varRateIntervalAlt {
|
|
// Rate interval is final and is not affected by resolution
|
|
interval = calculateRateInterval(adjustedInterval, dsInfo.TimeInterval, s.intervalCalculator)
|
|
} else {
|
|
intervalFactor := model.IntervalFactor
|
|
if intervalFactor == 0 {
|
|
intervalFactor = 1
|
|
}
|
|
interval = time.Duration(int64(adjustedInterval) * intervalFactor)
|
|
}
|
|
|
|
// Interpolate variables in expr
|
|
timeRange := query.TimeRange.To.Sub(query.TimeRange.From)
|
|
expr := interpolateVariables(model.Expr, interval, timeRange, s.intervalCalculator, dsInfo.TimeInterval)
|
|
|
|
rangeQuery := model.RangeQuery
|
|
if !model.InstantQuery && !model.RangeQuery {
|
|
// In older dashboards, we were not setting range query param and !range && !instant was run as range query
|
|
rangeQuery = true
|
|
}
|
|
|
|
// We never want to run exemplar query for alerting
|
|
exemplarQuery := model.ExemplarQuery
|
|
if queryContext.Headers["FromAlert"] == "true" {
|
|
exemplarQuery = false
|
|
}
|
|
|
|
qs = append(qs, &PrometheusQuery{
|
|
Expr: expr,
|
|
Step: interval,
|
|
LegendFormat: model.LegendFormat,
|
|
Start: query.TimeRange.From,
|
|
End: query.TimeRange.To,
|
|
RefId: query.RefID,
|
|
InstantQuery: model.InstantQuery,
|
|
RangeQuery: rangeQuery,
|
|
ExemplarQuery: exemplarQuery,
|
|
UtcOffsetSec: model.UtcOffsetSec,
|
|
})
|
|
}
|
|
return qs, nil
|
|
}
|
|
|
|
func parseTimeSeriesResponse(value map[TimeSeriesQueryType]interface{}, query *PrometheusQuery) (data.Frames, error) {
|
|
var (
|
|
frames = data.Frames{}
|
|
nextFrames = data.Frames{}
|
|
)
|
|
|
|
for _, value := range value {
|
|
// Zero out the slice to prevent data corruption.
|
|
nextFrames = nextFrames[:0]
|
|
|
|
switch v := value.(type) {
|
|
case model.Matrix:
|
|
nextFrames = matrixToDataFrames(v, query, nextFrames)
|
|
case model.Vector:
|
|
nextFrames = vectorToDataFrames(v, query, nextFrames)
|
|
case *model.Scalar:
|
|
nextFrames = scalarToDataFrames(v, query, nextFrames)
|
|
case []apiv1.ExemplarQueryResult:
|
|
nextFrames = exemplarToDataFrames(v, query, nextFrames)
|
|
default:
|
|
plog.Error("Query returned unexpected result type", "type", v, "query", query.Expr)
|
|
continue
|
|
}
|
|
|
|
frames = append(frames, nextFrames...)
|
|
}
|
|
|
|
return frames, nil
|
|
}
|
|
|
|
func calculateRateInterval(interval time.Duration, scrapeInterval string, intervalCalculator intervalv2.Calculator) time.Duration {
|
|
scrape := scrapeInterval
|
|
if scrape == "" {
|
|
scrape = "15s"
|
|
}
|
|
|
|
scrapeIntervalDuration, err := intervalv2.ParseIntervalStringToTimeDuration(scrape)
|
|
if err != nil {
|
|
return time.Duration(0)
|
|
}
|
|
|
|
rateInterval := time.Duration(int(math.Max(float64(interval+scrapeIntervalDuration), float64(4)*float64(scrapeIntervalDuration))))
|
|
return rateInterval
|
|
}
|
|
|
|
func interpolateVariables(expr string, interval time.Duration, timeRange time.Duration, intervalCalculator intervalv2.Calculator, timeInterval string) string {
|
|
rangeMs := timeRange.Milliseconds()
|
|
rangeSRounded := int64(math.Round(float64(rangeMs) / 1000.0))
|
|
|
|
expr = strings.ReplaceAll(expr, varIntervalMs, strconv.FormatInt(int64(interval/time.Millisecond), 10))
|
|
expr = strings.ReplaceAll(expr, varInterval, intervalv2.FormatDuration(interval))
|
|
expr = strings.ReplaceAll(expr, varRangeMs, strconv.FormatInt(rangeMs, 10))
|
|
expr = strings.ReplaceAll(expr, varRangeS, strconv.FormatInt(rangeSRounded, 10))
|
|
expr = strings.ReplaceAll(expr, varRange, strconv.FormatInt(rangeSRounded, 10)+"s")
|
|
expr = strings.ReplaceAll(expr, varRateInterval, intervalv2.FormatDuration(calculateRateInterval(interval, timeInterval, intervalCalculator)))
|
|
|
|
// Repetitive code, we should have functionality to unify these
|
|
expr = strings.ReplaceAll(expr, varIntervalMsAlt, strconv.FormatInt(int64(interval/time.Millisecond), 10))
|
|
expr = strings.ReplaceAll(expr, varIntervalAlt, intervalv2.FormatDuration(interval))
|
|
expr = strings.ReplaceAll(expr, varRangeMsAlt, strconv.FormatInt(rangeMs, 10))
|
|
expr = strings.ReplaceAll(expr, varRangeSAlt, strconv.FormatInt(rangeSRounded, 10))
|
|
expr = strings.ReplaceAll(expr, varRangeAlt, strconv.FormatInt(rangeSRounded, 10)+"s")
|
|
expr = strings.ReplaceAll(expr, varRateIntervalAlt, intervalv2.FormatDuration(calculateRateInterval(interval, timeInterval, intervalCalculator)))
|
|
return expr
|
|
}
|
|
|
|
func matrixToDataFrames(matrix model.Matrix, query *PrometheusQuery, frames data.Frames) data.Frames {
|
|
for _, v := range matrix {
|
|
tags := make(map[string]string, len(v.Metric))
|
|
for k, v := range v.Metric {
|
|
tags[string(k)] = string(v)
|
|
}
|
|
|
|
timeField := data.NewFieldFromFieldType(data.FieldTypeTime, len(v.Values))
|
|
valueField := data.NewFieldFromFieldType(data.FieldTypeNullableFloat64, len(v.Values))
|
|
|
|
for i, k := range v.Values {
|
|
timeField.Set(i, time.Unix(k.Timestamp.Unix(), 0).UTC())
|
|
value := float64(k.Value)
|
|
if !math.IsNaN(value) {
|
|
valueField.Set(i, &value)
|
|
}
|
|
}
|
|
|
|
name := formatLegend(v.Metric, query)
|
|
timeField.Name = data.TimeSeriesTimeFieldName
|
|
valueField.Name = data.TimeSeriesValueFieldName
|
|
valueField.Config = &data.FieldConfig{DisplayNameFromDS: name}
|
|
valueField.Labels = tags
|
|
|
|
frames = append(frames, newDataFrame(name, "matrix", timeField, valueField))
|
|
}
|
|
|
|
return frames
|
|
}
|
|
|
|
func scalarToDataFrames(scalar *model.Scalar, query *PrometheusQuery, frames data.Frames) data.Frames {
|
|
timeVector := []time.Time{time.Unix(scalar.Timestamp.Unix(), 0).UTC()}
|
|
values := []float64{float64(scalar.Value)}
|
|
name := fmt.Sprintf("%g", values[0])
|
|
|
|
return append(
|
|
frames,
|
|
newDataFrame(
|
|
name,
|
|
"scalar",
|
|
data.NewField("Time", nil, timeVector),
|
|
data.NewField("Value", nil, values).SetConfig(&data.FieldConfig{DisplayNameFromDS: name}),
|
|
),
|
|
)
|
|
}
|
|
|
|
func vectorToDataFrames(vector model.Vector, query *PrometheusQuery, frames data.Frames) data.Frames {
|
|
for _, v := range vector {
|
|
name := formatLegend(v.Metric, query)
|
|
tags := make(map[string]string, len(v.Metric))
|
|
timeVector := []time.Time{time.Unix(v.Timestamp.Unix(), 0).UTC()}
|
|
values := []float64{float64(v.Value)}
|
|
|
|
for k, v := range v.Metric {
|
|
tags[string(k)] = string(v)
|
|
}
|
|
|
|
frames = append(
|
|
frames,
|
|
newDataFrame(
|
|
name,
|
|
"vector",
|
|
data.NewField("Time", nil, timeVector),
|
|
data.NewField("Value", tags, values).SetConfig(&data.FieldConfig{DisplayNameFromDS: name}),
|
|
),
|
|
)
|
|
}
|
|
|
|
return frames
|
|
}
|
|
|
|
func exemplarToDataFrames(response []apiv1.ExemplarQueryResult, query *PrometheusQuery, frames data.Frames) data.Frames {
|
|
// TODO: this preallocation is very naive.
|
|
// We should figure out a better approximation here.
|
|
events := make([]ExemplarEvent, 0, len(response)*2)
|
|
|
|
for _, exemplarData := range response {
|
|
for _, exemplar := range exemplarData.Exemplars {
|
|
event := ExemplarEvent{}
|
|
exemplarTime := time.Unix(exemplar.Timestamp.Unix(), 0).UTC()
|
|
event.Time = exemplarTime
|
|
event.Value = float64(exemplar.Value)
|
|
event.Labels = make(map[string]string)
|
|
|
|
for label, value := range exemplar.Labels {
|
|
event.Labels[string(label)] = string(value)
|
|
}
|
|
|
|
for seriesLabel, seriesValue := range exemplarData.SeriesLabels {
|
|
event.Labels[string(seriesLabel)] = string(seriesValue)
|
|
}
|
|
|
|
events = append(events, event)
|
|
}
|
|
}
|
|
|
|
// Sampling of exemplars
|
|
bucketedExemplars := make(map[string][]ExemplarEvent)
|
|
values := make([]float64, 0, len(events))
|
|
|
|
// Create bucketed exemplars based on aligned timestamp
|
|
for _, event := range events {
|
|
alignedTs := fmt.Sprintf("%.0f", math.Floor(float64(event.Time.Unix())/query.Step.Seconds())*query.Step.Seconds())
|
|
_, ok := bucketedExemplars[alignedTs]
|
|
if !ok {
|
|
bucketedExemplars[alignedTs] = make([]ExemplarEvent, 0)
|
|
}
|
|
|
|
bucketedExemplars[alignedTs] = append(bucketedExemplars[alignedTs], event)
|
|
values = append(values, event.Value)
|
|
}
|
|
|
|
// Calculate standard deviation
|
|
standardDeviation := deviation(values)
|
|
|
|
// Create slice with all of the bucketed exemplars
|
|
sampledBuckets := make([]string, len(bucketedExemplars))
|
|
for bucketTimes := range bucketedExemplars {
|
|
sampledBuckets = append(sampledBuckets, bucketTimes)
|
|
}
|
|
sort.Strings(sampledBuckets)
|
|
|
|
// Sample exemplars based ona value, so we are not showing too many of them
|
|
sampleExemplars := make([]ExemplarEvent, 0, len(sampledBuckets))
|
|
for _, bucket := range sampledBuckets {
|
|
exemplarsInBucket := bucketedExemplars[bucket]
|
|
if len(exemplarsInBucket) == 1 {
|
|
sampleExemplars = append(sampleExemplars, exemplarsInBucket[0])
|
|
} else {
|
|
bucketValues := make([]float64, len(exemplarsInBucket))
|
|
for _, exemplar := range exemplarsInBucket {
|
|
bucketValues = append(bucketValues, exemplar.Value)
|
|
}
|
|
sort.Slice(bucketValues, func(i, j int) bool {
|
|
return bucketValues[i] > bucketValues[j]
|
|
})
|
|
|
|
sampledBucketValues := make([]float64, 0)
|
|
for _, value := range bucketValues {
|
|
if len(sampledBucketValues) == 0 {
|
|
sampledBucketValues = append(sampledBucketValues, value)
|
|
} else {
|
|
// Then take values only when at least 2 standard deviation distance to previously taken value
|
|
prev := sampledBucketValues[len(sampledBucketValues)-1]
|
|
if standardDeviation != 0 && prev-value >= float64(2)*standardDeviation {
|
|
sampledBucketValues = append(sampledBucketValues, value)
|
|
}
|
|
}
|
|
}
|
|
for _, valueBucket := range sampledBucketValues {
|
|
for _, exemplar := range exemplarsInBucket {
|
|
if exemplar.Value == valueBucket {
|
|
sampleExemplars = append(sampleExemplars, exemplar)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create DF from sampled exemplars
|
|
timeField := data.NewFieldFromFieldType(data.FieldTypeTime, len(sampleExemplars))
|
|
timeField.Name = "Time"
|
|
valueField := data.NewFieldFromFieldType(data.FieldTypeFloat64, len(sampleExemplars))
|
|
valueField.Name = "Value"
|
|
labelsVector := make(map[string][]string, len(sampleExemplars))
|
|
|
|
for i, exemplar := range sampleExemplars {
|
|
timeField.Set(i, exemplar.Time)
|
|
valueField.Set(i, exemplar.Value)
|
|
|
|
for label, value := range exemplar.Labels {
|
|
if labelsVector[label] == nil {
|
|
labelsVector[label] = make([]string, 0)
|
|
}
|
|
|
|
labelsVector[label] = append(labelsVector[label], value)
|
|
}
|
|
}
|
|
|
|
dataFields := make([]*data.Field, 0, len(labelsVector)+2)
|
|
dataFields = append(dataFields, timeField, valueField)
|
|
for label, vector := range labelsVector {
|
|
dataFields = append(dataFields, data.NewField(label, nil, vector))
|
|
}
|
|
|
|
return append(frames, newDataFrame("exemplar", "exemplar", dataFields...))
|
|
}
|
|
|
|
func deviation(values []float64) float64 {
|
|
var sum, mean, sd float64
|
|
valuesLen := float64(len(values))
|
|
for _, value := range values {
|
|
sum += value
|
|
}
|
|
mean = sum / valuesLen
|
|
for j := 0; j < len(values); j++ {
|
|
sd += math.Pow(values[j]-mean, 2)
|
|
}
|
|
return math.Sqrt(sd / (valuesLen - 1))
|
|
}
|
|
|
|
func newDataFrame(name string, typ string, fields ...*data.Field) *data.Frame {
|
|
frame := data.NewFrame(name, fields...)
|
|
frame.Meta = &data.FrameMeta{
|
|
Custom: map[string]string{
|
|
"resultType": typ,
|
|
},
|
|
}
|
|
|
|
return frame
|
|
}
|