grafana/pkg/tsdb/azuremonitor/azuremonitor-datasource_test.go

510 lines
19 KiB
Go

package azuremonitor
import (
"encoding/json"
"fmt"
"io/ioutil"
"net/url"
"path/filepath"
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/grafana/grafana-plugin-sdk-go/data"
"github.com/grafana/grafana/pkg/components/simplejson"
"github.com/grafana/grafana/pkg/models"
"github.com/grafana/grafana/pkg/tsdb"
"github.com/stretchr/testify/require"
ptr "github.com/xorcare/pointer"
)
func TestAzureMonitorBuildQueries(t *testing.T) {
datasource := &AzureMonitorDatasource{}
fromStart := time.Date(2018, 3, 15, 13, 0, 0, 0, time.UTC).In(time.Local)
tests := []struct {
name string
azureMonitorVariedProperties map[string]interface{}
azureMonitorQueryTarget string
expectedInterval string
queryIntervalMS int64
}{
{
name: "Parse queries from frontend and build AzureMonitor API queries",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "PT1M",
"top": "10",
},
expectedInterval: "PT1M",
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
},
{
name: "time grain set to auto",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "auto",
"top": "10",
},
queryIntervalMS: 400000,
expectedInterval: "PT15M",
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT15M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
},
{
name: "time grain set to auto",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "auto",
"allowedTimeGrainsMs": []int64{60000, 300000},
"top": "10",
},
queryIntervalMS: 400000,
expectedInterval: "PT5M",
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT5M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
},
{
name: "has a dimension filter",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "PT1M",
"dimension": "blob",
"dimensionFilter": "*",
"top": "30",
},
queryIntervalMS: 400000,
expectedInterval: "PT1M",
azureMonitorQueryTarget: "%24filter=blob+eq+%27%2A%27&aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z&top=30",
},
{
name: "has a dimension filter and none Dimension",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "PT1M",
"dimension": "None",
"dimensionFilter": "*",
"top": "10",
},
queryIntervalMS: 400000,
expectedInterval: "PT1M",
azureMonitorQueryTarget: "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z",
},
{
name: "has dimensionFilter*s* property with one dimension",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "PT1M",
"dimensionFilters": []azureMonitorDimensionFilter{{"blob", "eq", "*"}},
"top": "30",
},
queryIntervalMS: 400000,
expectedInterval: "PT1M",
azureMonitorQueryTarget: "%24filter=blob+eq+%27%2A%27&aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z&top=30",
},
{
name: "has dimensionFilter*s* property with two dimensions",
azureMonitorVariedProperties: map[string]interface{}{
"timeGrain": "PT1M",
"dimensionFilters": []azureMonitorDimensionFilter{{"blob", "eq", "*"}, {"tier", "eq", "*"}},
"top": "30",
},
queryIntervalMS: 400000,
expectedInterval: "PT1M",
azureMonitorQueryTarget: "%24filter=blob+eq+%27%2A%27+and+tier+eq+%27%2A%27&aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z&top=30",
},
}
commonAzureModelProps := map[string]interface{}{
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricNamespace": "Microsoft.Compute-virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
for k, v := range commonAzureModelProps {
tt.azureMonitorVariedProperties[k] = v
}
tsdbQuery := &tsdb.TsdbQuery{
TimeRange: &tsdb.TimeRange{
From: fmt.Sprintf("%v", fromStart.Unix()*1000),
To: fmt.Sprintf("%v", fromStart.Add(34*time.Minute).Unix()*1000),
},
Queries: []*tsdb.Query{
{
DataSource: &models.DataSource{
JsonData: simplejson.NewFromAny(map[string]interface{}{
"subscriptionId": "default-subscription",
}),
},
Model: simplejson.NewFromAny(map[string]interface{}{
"subscription": "12345678-aaaa-bbbb-cccc-123456789abc",
"azureMonitor": tt.azureMonitorVariedProperties,
},
),
RefId: "A",
IntervalMs: tt.queryIntervalMS,
},
},
}
azureMonitorQuery := &AzureMonitorQuery{
URL: "12345678-aaaa-bbbb-cccc-123456789abc/resourceGroups/grafanastaging/providers/Microsoft.Compute/virtualMachines/grafana/providers/microsoft.insights/metrics",
UrlComponents: map[string]string{
"metricDefinition": "Microsoft.Compute/virtualMachines",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"subscription": "12345678-aaaa-bbbb-cccc-123456789abc",
},
Target: tt.azureMonitorQueryTarget,
RefID: "A",
Alias: "testalias",
}
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
require.NoError(t, err)
if diff := cmp.Diff(azureMonitorQuery, queries[0], cmpopts.IgnoreUnexported(simplejson.Json{}), cmpopts.IgnoreFields(AzureMonitorQuery{}, "Params")); diff != "" {
t.Errorf("Result mismatch (-want +got):\n%s", diff)
}
})
}
}
func makeDates(startDate time.Time, count int, interval time.Duration) (times []time.Time) {
for i := 0; i < count; i++ {
times = append(times, startDate.Add(interval*time.Duration(i)))
}
return
}
func TestAzureMonitorParseResponse(t *testing.T) {
tests := []struct {
name string
responseFile string
mockQuery *AzureMonitorQuery
expectedFrames data.Frames
queryIntervalMS int64
}{
{
name: "average aggregate time series response",
responseFile: "1-azure-monitor-response-avg.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 8, 10, 13, 0, 0, time.UTC), 5, time.Minute)),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(2.0875), ptr.Float64(2.1525), ptr.Float64(2.155), ptr.Float64(3.6925), ptr.Float64(2.44),
}).SetConfig(&data.FieldConfig{Unit: "percent"})),
},
},
{
name: "total aggregate time series response",
responseFile: "2-azure-monitor-response-total.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Total"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 13, 29, 0, 0, time.UTC), 5, time.Minute)),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(8.26), ptr.Float64(8.7), ptr.Float64(14.82), ptr.Float64(10.07), ptr.Float64(8.52),
}).SetConfig(&data.FieldConfig{Unit: "percent"})),
},
},
{
name: "maximum aggregate time series response",
responseFile: "3-azure-monitor-response-maximum.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Maximum"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 14, 26, 0, 0, time.UTC), 5, time.Minute)),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(3.07), ptr.Float64(2.92), ptr.Float64(2.87), ptr.Float64(2.27), ptr.Float64(2.52),
}).SetConfig(&data.FieldConfig{Unit: "percent"})),
},
},
{
name: "minimum aggregate time series response",
responseFile: "4-azure-monitor-response-minimum.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Minimum"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 14, 43, 0, 0, time.UTC), 5, time.Minute)),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(1.51), ptr.Float64(2.38), ptr.Float64(1.69), ptr.Float64(2.27), ptr.Float64(1.96),
}).SetConfig(&data.FieldConfig{Unit: "percent"})),
},
},
{
name: "count aggregate time series response",
responseFile: "5-azure-monitor-response-count.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Count"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 14, 44, 0, 0, time.UTC), 5, time.Minute)),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(4), ptr.Float64(4), ptr.Float64(4), ptr.Float64(4), ptr.Float64(4),
}).SetConfig(&data.FieldConfig{Unit: "percent"})),
},
},
{
name: "single dimension time series response",
responseFile: "6-azure-monitor-response-single-dimension.json",
mockQuery: &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
data.NewField("Blob Count", data.Labels{"blobtype": "PageBlob"},
[]*float64{ptr.Float64(3), ptr.Float64(3), ptr.Float64(3), ptr.Float64(3), ptr.Float64(3), nil}).SetConfig(&data.FieldConfig{Unit: "short"})),
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
data.NewField("Blob Count", data.Labels{"blobtype": "BlockBlob"},
[]*float64{ptr.Float64(1), ptr.Float64(1), ptr.Float64(1), ptr.Float64(1), ptr.Float64(1), nil}).SetConfig(&data.FieldConfig{Unit: "short"})),
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
data.NewField("Blob Count", data.Labels{"blobtype": "Azure Data Lake Storage"},
[]*float64{ptr.Float64(0), ptr.Float64(0), ptr.Float64(0), ptr.Float64(0), ptr.Float64(0), nil}).SetConfig(&data.FieldConfig{Unit: "short"})),
},
},
{
name: "with alias patterns in the query",
responseFile: "2-azure-monitor-response-total.json",
mockQuery: &AzureMonitorQuery{
Alias: "custom {{resourcegroup}} {{namespace}} {{resourceName}} {{metric}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Total"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 13, 29, 0, 0, time.UTC), 5, time.Minute)),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(8.26), ptr.Float64(8.7), ptr.Float64(14.82), ptr.Float64(10.07), ptr.Float64(8.52),
}).SetConfig(&data.FieldConfig{Unit: "percent", DisplayName: "custom grafanastaging Microsoft.Compute/virtualMachines grafana Percentage CPU"})),
},
},
{
name: "single dimension with alias",
responseFile: "6-azure-monitor-response-single-dimension.json",
mockQuery: &AzureMonitorQuery{
Alias: "{{dimensionname}}={{DimensionValue}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
data.NewField("Blob Count", data.Labels{"blobtype": "PageBlob"},
[]*float64{ptr.Float64(3), ptr.Float64(3), ptr.Float64(3), ptr.Float64(3), ptr.Float64(3), nil}).SetConfig(&data.FieldConfig{Unit: "short", DisplayName: "blobtype=PageBlob"})),
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
data.NewField("Blob Count", data.Labels{"blobtype": "BlockBlob"}, []*float64{
ptr.Float64(1), ptr.Float64(1), ptr.Float64(1), ptr.Float64(1), ptr.Float64(1), nil,
}).SetConfig(&data.FieldConfig{Unit: "short", DisplayName: "blobtype=BlockBlob"})),
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2019, 2, 9, 15, 21, 0, 0, time.UTC), 6, time.Hour)),
data.NewField("Blob Count", data.Labels{"blobtype": "Azure Data Lake Storage"}, []*float64{
ptr.Float64(0), ptr.Float64(0), ptr.Float64(0), ptr.Float64(0), ptr.Float64(0), nil,
}).SetConfig(&data.FieldConfig{Unit: "short", DisplayName: "blobtype=Azure Data Lake Storage"})),
},
},
{
name: "multiple dimension time series response with label alias",
responseFile: "7-azure-monitor-response-multi-dimension.json",
mockQuery: &AzureMonitorQuery{
Alias: "{{resourcegroup}} {Blob Type={{blobtype}}, Tier={{Tier}}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2020, 06, 30, 9, 58, 0, 0, time.UTC), 3, time.Hour)),
data.NewField("Blob Capacity", data.Labels{"blobtype": "PageBlob", "tier": "Standard"},
[]*float64{ptr.Float64(675530), ptr.Float64(675530), ptr.Float64(675530)}).SetConfig(
&data.FieldConfig{Unit: "decbytes", DisplayName: "danieltest {Blob Type=PageBlob, Tier=Standard}"})),
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2020, 06, 30, 9, 58, 0, 0, time.UTC), 3, time.Hour)),
data.NewField("Blob Capacity", data.Labels{"blobtype": "BlockBlob", "tier": "Hot"},
[]*float64{ptr.Float64(0), ptr.Float64(0), ptr.Float64(0)}).SetConfig(
&data.FieldConfig{Unit: "decbytes", DisplayName: "danieltest {Blob Type=BlockBlob, Tier=Hot}"})),
data.NewFrame("",
data.NewField("", nil,
makeDates(time.Date(2020, 06, 30, 9, 58, 0, 0, time.UTC), 3, time.Hour)),
data.NewField("Blob Capacity", data.Labels{"blobtype": "Azure Data Lake Storage", "tier": "Cool"},
[]*float64{ptr.Float64(0), ptr.Float64(0), ptr.Float64(0)}).SetConfig(
&data.FieldConfig{Unit: "decbytes", DisplayName: "danieltest {Blob Type=Azure Data Lake Storage, Tier=Cool}"})),
},
},
{
name: "unspecified unit with alias should not panic",
responseFile: "8-azure-monitor-response-unspecified-unit.json",
mockQuery: &AzureMonitorQuery{
Alias: "custom",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
},
expectedFrames: data.Frames{
data.NewFrame("",
data.NewField("", nil,
[]time.Time{time.Date(2019, 2, 8, 10, 13, 0, 0, time.UTC)}),
data.NewField("Percentage CPU", nil, []*float64{
ptr.Float64(2.0875),
}).SetConfig(&data.FieldConfig{DisplayName: "custom"})),
},
},
}
datasource := &AzureMonitorDatasource{}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
azData, err := loadTestFile("azuremonitor/" + tt.responseFile)
require.NoError(t, err)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
err = datasource.parseResponse(res, azData, tt.mockQuery)
require.NoError(t, err)
frames, err := res.Dataframes.Decoded()
require.NoError(t, err)
if diff := cmp.Diff(tt.expectedFrames, frames, data.FrameTestCompareOptions()...); diff != "" {
t.Errorf("Result mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestFindClosestAllowIntervalMS(t *testing.T) {
humanIntervalToMS := map[string]int64{
"3m": 180000,
"5m": 300000,
"10m": 600000,
"15m": 900000,
"1d": 86400000,
"2d": 172800000,
}
tests := []struct {
name string
allowedTimeGrains []int64 // Note: Uses defaults when empty list
inputInterval int64
expectedInterval int64
}{
{
name: "closest to 3m is 5m",
allowedTimeGrains: []int64{},
inputInterval: humanIntervalToMS["3m"],
expectedInterval: humanIntervalToMS["5m"],
},
{
name: "closest to 10m is 15m",
allowedTimeGrains: []int64{},
inputInterval: humanIntervalToMS["10m"],
expectedInterval: humanIntervalToMS["15m"],
},
{
name: "closest to 2d is 1d",
allowedTimeGrains: []int64{},
inputInterval: humanIntervalToMS["2d"],
expectedInterval: humanIntervalToMS["1d"],
},
{
name: "closest to 3m is 1d when 1d is only allowed interval",
allowedTimeGrains: []int64{humanIntervalToMS["1d"]},
inputInterval: humanIntervalToMS["2d"],
expectedInterval: humanIntervalToMS["1d"],
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
interval := findClosestAllowedIntervalMS(tt.inputInterval, tt.allowedTimeGrains)
require.Equal(t, tt.expectedInterval, interval)
})
}
}
func loadTestFile(name string) (AzureMonitorResponse, error) {
var azData AzureMonitorResponse
path := filepath.Join("testdata", name)
jsonBody, err := ioutil.ReadFile(path)
if err != nil {
return azData, err
}
err = json.Unmarshal(jsonBody, &azData)
return azData, err
}