Files
grafana/public/app/plugins/datasource/loki/responseUtils.test.ts
Matias Chomicki 17cce38545 Loki Monaco Editor: implement extracted label keys (#57368)
* feat(loki-monaco-editor): implement extracted label keys

* Chore: add missing responseUtils tests

* feat(loki-monaco-editor): suggest extracted labels

* Chore: fix test case name

* feat(loki-monaco-editor): dont suggest labels in logs query

* Chore: remove console log

* Chore: remove extracted keyword from suggested label

* feat(loki-monaco-editor): do not suggest duplicated labels

* refactor(loki-monaco-editor): pass query and offset to the completions resolver

* Revert "refactor(loki-monaco-editor): pass query and offset to the completions resolver"

This reverts commit d39464fd1a4624d5cd5420156dd2d1e2dad2eecf.

* refactor(loki-monaco-editor): refactor label completions for grouping

* Chore: remove obsolete function
2022-11-07 11:45:07 -05:00

108 lines
3.4 KiB
TypeScript

import { cloneDeep } from 'lodash';
import { ArrayVector, DataFrame, FieldType } from '@grafana/data';
import {
dataFrameHasLevelLabel,
dataFrameHasLokiError,
extractLevelLikeLabelFromDataFrame,
extractLogParserFromDataFrame,
extractLabelKeysFromDataFrame,
} from './responseUtils';
const frame: DataFrame = {
length: 1,
fields: [
{
name: 'Time',
config: {},
type: FieldType.time,
values: new ArrayVector([1]),
},
{
name: 'labels',
config: {},
type: FieldType.other,
values: new ArrayVector([{ level: 'info' }]),
},
{
name: 'Line',
config: {},
type: FieldType.string,
values: new ArrayVector(['line1']),
},
],
};
describe('dataFrameHasParsingError', () => {
it('handles frame with parsing error', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([{ level: 'info', __error__: 'error' }]);
expect(dataFrameHasLokiError(input)).toBe(true);
});
it('handles frame without parsing error', () => {
const input = cloneDeep(frame);
expect(dataFrameHasLokiError(input)).toBe(false);
});
});
describe('dataFrameHasLevelLabel', () => {
it('returns true if level label is present', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([{ level: 'info' }]);
expect(dataFrameHasLevelLabel(input)).toBe(true);
});
it('returns false if level label is present', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([{ foo: 'bar' }]);
expect(dataFrameHasLevelLabel(input)).toBe(false);
});
});
describe('extractLevelLikeLabelFromDataFrame', () => {
it('returns label if lvl label is present', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([{ lvl: 'info' }]);
expect(extractLevelLikeLabelFromDataFrame(input)).toBe('lvl');
});
it('returns label if level-like label is present', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([{ error_level: 'info' }]);
expect(extractLevelLikeLabelFromDataFrame(input)).toBe('error_level');
});
it('returns undefined if no level-like label is present', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([{ foo: 'info' }]);
expect(extractLevelLikeLabelFromDataFrame(input)).toBe(null);
});
});
describe('extractLogParserFromDataFrame', () => {
it('returns false by default', () => {
const input = cloneDeep(frame);
expect(extractLogParserFromDataFrame(input)).toEqual({ hasJSON: false, hasLogfmt: false });
});
it('identifies JSON', () => {
const input = cloneDeep(frame);
input.fields[2].values = new ArrayVector(['{"a":"b"}']);
expect(extractLogParserFromDataFrame(input)).toEqual({ hasJSON: true, hasLogfmt: false });
});
it('identifies logfmt', () => {
const input = cloneDeep(frame);
input.fields[2].values = new ArrayVector(['a=b']);
expect(extractLogParserFromDataFrame(input)).toEqual({ hasJSON: false, hasLogfmt: true });
});
});
describe('extractLabelKeysFromDataFrame', () => {
it('returns empty by default', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([]);
expect(extractLabelKeysFromDataFrame(input)).toEqual([]);
});
it('extracts label keys', () => {
const input = cloneDeep(frame);
expect(extractLabelKeysFromDataFrame(input)).toEqual(['level']);
});
});