grafana/public/app/plugins/datasource/elasticsearch/specs/elastic_response.test.ts
Marcus Efraimsson eecd8d1064 Elasticsearch: Visualize logs in Explore (#17605)
* explore: try to use existing mode when switching datasource

* elasticsearch: initial explore logs support

* Elasticsearch: Adds ElasticsearchOptions type
Updates tests accordingly

* Elasticsearch: Adds typing to query method

* Elasticsearch: Makes maxConcurrentShardRequests optional

* Explore: Allows empty query for elasticsearch datasource

* Elasticsearch: Unifies ElasticsearchQuery interface definition
Removes check for context === 'explore'

* Elasticsearch: Removes context property from ElasticsearchQuery interface
Adds field property
Removes metricAggs property
Adds typing to metrics property

* Elasticsearch: Runs default 'empty' query when 'clear all' button is pressed

* Elasticsearch: Removes index property from ElasticsearchOptions interface

* Elasticsearch: Removes commented code from ElasticsearchQueryField.tsx

* Elasticsearch: Adds comment warning usage of for...in to elastic_response.ts

* Elasticsearch: adds tests related to log queries
2019-06-24 21:15:03 +01:00

878 lines
25 KiB
TypeScript

import { ElasticResponse } from '../elastic_response';
describe('ElasticResponse', () => {
let targets;
let response;
let result;
describe('simple query and count', () => {
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }],
bucketAggs: [{ type: 'date_histogram', field: '@timestamp', id: '2' }],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
doc_count: 10,
key: 1000,
},
{
doc_count: 15,
key: 2000,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 1 series', () => {
expect(result.data.length).toBe(1);
expect(result.data[0].target).toBe('Count');
expect(result.data[0].datapoints.length).toBe(2);
expect(result.data[0].datapoints[0][0]).toBe(10);
expect(result.data[0].datapoints[0][1]).toBe(1000);
});
});
describe('simple query count & avg aggregation', () => {
let result;
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }, { type: 'avg', field: 'value', id: '2' }],
bucketAggs: [{ type: 'date_histogram', field: '@timestamp', id: '3' }],
},
];
response = {
responses: [
{
aggregations: {
'3': {
buckets: [
{
'2': { value: 88 },
doc_count: 10,
key: 1000,
},
{
'2': { value: 99 },
doc_count: 15,
key: 2000,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 2 series', () => {
expect(result.data.length).toBe(2);
expect(result.data[0].datapoints.length).toBe(2);
expect(result.data[0].datapoints[0][0]).toBe(10);
expect(result.data[0].datapoints[0][1]).toBe(1000);
expect(result.data[1].target).toBe('Average value');
expect(result.data[1].datapoints[0][0]).toBe(88);
expect(result.data[1].datapoints[1][0]).toBe(99);
});
});
describe('single group by query one metric', () => {
let result;
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }],
bucketAggs: [
{ type: 'terms', field: 'host', id: '2' },
{ type: 'date_histogram', field: '@timestamp', id: '3' },
],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
'3': {
buckets: [{ doc_count: 1, key: 1000 }, { doc_count: 3, key: 2000 }],
},
doc_count: 4,
key: 'server1',
},
{
'3': {
buckets: [{ doc_count: 2, key: 1000 }, { doc_count: 8, key: 2000 }],
},
doc_count: 10,
key: 'server2',
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 2 series', () => {
expect(result.data.length).toBe(2);
expect(result.data[0].datapoints.length).toBe(2);
expect(result.data[0].target).toBe('server1');
expect(result.data[1].target).toBe('server2');
});
});
describe('single group by query two metrics', () => {
let result;
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }, { type: 'avg', field: '@value', id: '4' }],
bucketAggs: [
{ type: 'terms', field: 'host', id: '2' },
{ type: 'date_histogram', field: '@timestamp', id: '3' },
],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
'3': {
buckets: [
{ '4': { value: 10 }, doc_count: 1, key: 1000 },
{ '4': { value: 12 }, doc_count: 3, key: 2000 },
],
},
doc_count: 4,
key: 'server1',
},
{
'3': {
buckets: [
{ '4': { value: 20 }, doc_count: 1, key: 1000 },
{ '4': { value: 32 }, doc_count: 3, key: 2000 },
],
},
doc_count: 10,
key: 'server2',
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 2 series', () => {
expect(result.data.length).toBe(4);
expect(result.data[0].datapoints.length).toBe(2);
expect(result.data[0].target).toBe('server1 Count');
expect(result.data[1].target).toBe('server1 Average @value');
expect(result.data[2].target).toBe('server2 Count');
expect(result.data[3].target).toBe('server2 Average @value');
});
});
describe('with percentiles ', () => {
let result;
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'percentiles', settings: { percents: [75, 90] }, id: '1' }],
bucketAggs: [{ type: 'date_histogram', field: '@timestamp', id: '3' }],
},
];
response = {
responses: [
{
aggregations: {
'3': {
buckets: [
{
'1': { values: { '75': 3.3, '90': 5.5 } },
doc_count: 10,
key: 1000,
},
{
'1': { values: { '75': 2.3, '90': 4.5 } },
doc_count: 15,
key: 2000,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 2 series', () => {
expect(result.data.length).toBe(2);
expect(result.data[0].datapoints.length).toBe(2);
expect(result.data[0].target).toBe('p75');
expect(result.data[1].target).toBe('p90');
expect(result.data[0].datapoints[0][0]).toBe(3.3);
expect(result.data[0].datapoints[0][1]).toBe(1000);
expect(result.data[1].datapoints[1][0]).toBe(4.5);
});
});
describe('with extended_stats', () => {
let result;
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [
{
type: 'extended_stats',
meta: { max: true, std_deviation_bounds_upper: true },
id: '1',
},
],
bucketAggs: [{ type: 'terms', field: 'host', id: '3' }, { type: 'date_histogram', id: '4' }],
},
];
response = {
responses: [
{
aggregations: {
'3': {
buckets: [
{
key: 'server1',
'4': {
buckets: [
{
'1': {
max: 10.2,
min: 5.5,
std_deviation_bounds: { upper: 3, lower: -2 },
},
doc_count: 10,
key: 1000,
},
],
},
},
{
key: 'server2',
'4': {
buckets: [
{
'1': {
max: 10.2,
min: 5.5,
std_deviation_bounds: { upper: 3, lower: -2 },
},
doc_count: 10,
key: 1000,
},
],
},
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 4 series', () => {
expect(result.data.length).toBe(4);
expect(result.data[0].datapoints.length).toBe(1);
expect(result.data[0].target).toBe('server1 Max');
expect(result.data[1].target).toBe('server1 Std Dev Upper');
expect(result.data[0].datapoints[0][0]).toBe(10.2);
expect(result.data[1].datapoints[0][0]).toBe(3);
});
});
describe('single group by with alias pattern', () => {
let result;
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }],
alias: '{{term @host}} {{metric}} and {{not_exist}} {{@host}}',
bucketAggs: [
{ type: 'terms', field: '@host', id: '2' },
{ type: 'date_histogram', field: '@timestamp', id: '3' },
],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
'3': {
buckets: [{ doc_count: 1, key: 1000 }, { doc_count: 3, key: 2000 }],
},
doc_count: 4,
key: 'server1',
},
{
'3': {
buckets: [{ doc_count: 2, key: 1000 }, { doc_count: 8, key: 2000 }],
},
doc_count: 10,
key: 'server2',
},
{
'3': {
buckets: [{ doc_count: 2, key: 1000 }, { doc_count: 8, key: 2000 }],
},
doc_count: 10,
key: 0,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 2 series', () => {
expect(result.data.length).toBe(3);
expect(result.data[0].datapoints.length).toBe(2);
expect(result.data[0].target).toBe('server1 Count and {{not_exist}} server1');
expect(result.data[1].target).toBe('server2 Count and {{not_exist}} server2');
expect(result.data[2].target).toBe('0 Count and {{not_exist}} 0');
});
});
describe('histogram response', () => {
let result;
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }],
bucketAggs: [{ type: 'histogram', field: 'bytes', id: '3' }],
},
];
response = {
responses: [
{
aggregations: {
'3': {
buckets: [{ doc_count: 1, key: 1000 }, { doc_count: 3, key: 2000 }, { doc_count: 2, key: 1000 }],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return table with byte and count', () => {
expect(result.data[0].rows.length).toBe(3);
expect(result.data[0].columns).toEqual([{ text: 'bytes', filterable: true }, { text: 'Count' }]);
});
});
describe('with two filters agg', () => {
let result;
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }],
bucketAggs: [
{
id: '2',
type: 'filters',
settings: {
filters: [{ query: '@metric:cpu' }, { query: '@metric:logins.count' }],
},
},
{ type: 'date_histogram', field: '@timestamp', id: '3' },
],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: {
'@metric:cpu': {
'3': {
buckets: [{ doc_count: 1, key: 1000 }, { doc_count: 3, key: 2000 }],
},
},
'@metric:logins.count': {
'3': {
buckets: [{ doc_count: 2, key: 1000 }, { doc_count: 8, key: 2000 }],
},
},
},
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 2 series', () => {
expect(result.data.length).toBe(2);
expect(result.data[0].datapoints.length).toBe(2);
expect(result.data[0].target).toBe('@metric:cpu');
expect(result.data[1].target).toBe('@metric:logins.count');
});
});
describe('with dropfirst and last aggregation', () => {
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'avg', id: '1' }, { type: 'count' }],
bucketAggs: [
{
id: '2',
type: 'date_histogram',
field: 'host',
settings: { trimEdges: 1 },
},
],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
'1': { value: 1000 },
key: 1,
doc_count: 369,
},
{
'1': { value: 2000 },
key: 2,
doc_count: 200,
},
{
'1': { value: 2000 },
key: 3,
doc_count: 200,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should remove first and last value', () => {
expect(result.data.length).toBe(2);
expect(result.data[0].datapoints.length).toBe(1);
});
});
describe('No group by time', () => {
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'avg', id: '1' }, { type: 'count' }],
bucketAggs: [{ id: '2', type: 'terms', field: 'host' }],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
'1': { value: 1000 },
key: 'server-1',
doc_count: 369,
},
{
'1': { value: 2000 },
key: 'server-2',
doc_count: 200,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return table', () => {
expect(result.data.length).toBe(1);
expect(result.data[0].type).toBe('table');
expect(result.data[0].rows.length).toBe(2);
expect(result.data[0].rows[0][0]).toBe('server-1');
expect(result.data[0].rows[0][1]).toBe(1000);
expect(result.data[0].rows[0][2]).toBe(369);
expect(result.data[0].rows[1][0]).toBe('server-2');
expect(result.data[0].rows[1][1]).toBe(2000);
});
});
describe('No group by time with percentiles ', () => {
let result;
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'percentiles', field: 'value', settings: { percents: [75, 90] }, id: '1' }],
bucketAggs: [{ type: 'term', field: 'id', id: '3' }],
},
];
response = {
responses: [
{
aggregations: {
'3': {
buckets: [
{
'1': { values: { '75': 3.3, '90': 5.5 } },
doc_count: 10,
key: 'id1',
},
{
'1': { values: { '75': 2.3, '90': 4.5 } },
doc_count: 15,
key: 'id2',
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return table', () => {
expect(result.data.length).toBe(1);
expect(result.data[0].type).toBe('table');
expect(result.data[0].columns[0].text).toBe('id');
expect(result.data[0].columns[1].text).toBe('p75 value');
expect(result.data[0].columns[2].text).toBe('p90 value');
expect(result.data[0].rows.length).toBe(2);
expect(result.data[0].rows[0][0]).toBe('id1');
expect(result.data[0].rows[0][1]).toBe(3.3);
expect(result.data[0].rows[0][2]).toBe(5.5);
expect(result.data[0].rows[1][0]).toBe('id2');
expect(result.data[0].rows[1][1]).toBe(2.3);
expect(result.data[0].rows[1][2]).toBe(4.5);
});
});
describe('Multiple metrics of same type', () => {
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'avg', id: '1', field: 'test' }, { type: 'avg', id: '2', field: 'test2' }],
bucketAggs: [{ id: '2', type: 'terms', field: 'host' }],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
'1': { value: 1000 },
'2': { value: 3000 },
key: 'server-1',
doc_count: 369,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should include field in metric name', () => {
expect(result.data[0].type).toBe('table');
expect(result.data[0].rows[0][1]).toBe(1000);
expect(result.data[0].rows[0][2]).toBe(3000);
});
});
describe('Raw documents query', () => {
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'raw_document', id: '1' }],
bucketAggs: [],
},
];
response = {
responses: [
{
hits: {
total: 100,
hits: [
{
_id: '1',
_type: 'type',
_index: 'index',
_source: { sourceProp: 'asd' },
fields: { fieldProp: 'field' },
},
{
_source: { sourceProp: 'asd2' },
fields: { fieldProp: 'field2' },
},
],
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return docs', () => {
expect(result.data.length).toBe(1);
expect(result.data[0].type).toBe('docs');
expect(result.data[0].total).toBe(100);
expect(result.data[0].datapoints.length).toBe(2);
expect(result.data[0].datapoints[0].sourceProp).toBe('asd');
expect(result.data[0].datapoints[0].fieldProp).toBe('field');
});
});
describe('with bucket_script ', () => {
let result;
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [
{ id: '1', type: 'sum', field: '@value' },
{ id: '3', type: 'max', field: '@value' },
{
id: '4',
field: 'select field',
pipelineVariables: [{ name: 'var1', pipelineAgg: '1' }, { name: 'var2', pipelineAgg: '3' }],
settings: { script: 'params.var1 * params.var2' },
type: 'bucket_script',
},
],
bucketAggs: [{ type: 'date_histogram', field: '@timestamp', id: '2' }],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
1: { value: 2 },
3: { value: 3 },
4: { value: 6 },
doc_count: 60,
key: 1000,
},
{
1: { value: 3 },
3: { value: 4 },
4: { value: 12 },
doc_count: 60,
key: 2000,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 3 series', () => {
expect(result.data.length).toBe(3);
expect(result.data[0].datapoints.length).toBe(2);
expect(result.data[0].target).toBe('Sum @value');
expect(result.data[1].target).toBe('Max @value');
expect(result.data[2].target).toBe('Sum @value * Max @value');
expect(result.data[0].datapoints[0][0]).toBe(2);
expect(result.data[1].datapoints[0][0]).toBe(3);
expect(result.data[2].datapoints[0][0]).toBe(6);
expect(result.data[0].datapoints[1][0]).toBe(3);
expect(result.data[1].datapoints[1][0]).toBe(4);
expect(result.data[2].datapoints[1][0]).toBe(12);
});
});
describe('simple logs query and count', () => {
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }],
bucketAggs: [{ type: 'date_histogram', settings: { interval: 'auto' }, id: '2' }],
context: 'explore',
interval: '10s',
isLogsQuery: true,
key: 'Q-1561369883389-0.7611823271062786-0',
live: false,
maxDataPoints: 1620,
query: '',
timeField: '@timestamp',
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
doc_count: 10,
key: 1000,
},
{
doc_count: 15,
key: 2000,
},
],
},
},
hits: {
hits: [
{
_id: 'fdsfs',
_type: '_doc',
_index: 'mock-index',
_source: {
'@timestamp': '2019-06-24T09:51:19.765Z',
host: 'djisaodjsoad',
message: 'hello, i am a message',
},
fields: {
'@timestamp': ['2019-06-24T09:51:19.765Z'],
},
},
{
_id: 'kdospaidopa',
_type: '_doc',
_index: 'mock-index',
_source: {
'@timestamp': '2019-06-24T09:52:19.765Z',
host: 'dsalkdakdop',
message: 'hello, i am also message',
},
fields: {
'@timestamp': ['2019-06-24T09:52:19.765Z'],
},
},
],
},
},
],
};
result = new ElasticResponse(targets, response).getLogs();
});
it('should return histogram aggregation and documents', () => {
expect(result.data.length).toBe(2);
expect(result.data[0].fields).toContainEqual({ name: '@timestamp', type: 'time' });
expect(result.data[0].fields).toContainEqual({ name: 'host', type: 'string' });
expect(result.data[0].fields).toContainEqual({ name: 'message', type: 'string' });
result.data[0].rows.forEach((row, i) => {
expect(row).toContain(response.responses[0].hits.hits[i]._id);
expect(row).toContain(response.responses[0].hits.hits[i]._type);
expect(row).toContain(response.responses[0].hits.hits[i]._index);
expect(row).toContain(JSON.stringify(response.responses[0].hits.hits[i]._source, undefined, 2));
});
expect(result.data[1]).toHaveProperty('name', 'Count');
response.responses[0].aggregations['2'].buckets.forEach(bucket => {
expect(result.data[1].rows).toContainEqual([bucket.doc_count, bucket.key]);
});
});
});
});