grafana/public/app/plugins/datasource/prometheus/result_transformer.test.ts
Zoltán Bedi f33158dcdf
Prometheus: parse value as number when label is le (#26375)
* Prometheus: parse value as number when label is le

* Convert prometheus table value back to string for modify query
2020-08-18 14:47:25 +02:00

481 lines
12 KiB
TypeScript

import { ResultTransformer } from './result_transformer';
import { DataQueryResponseData } from '@grafana/data';
describe('Prometheus Result Transformer', () => {
const ctx: any = {};
beforeEach(() => {
ctx.templateSrv = {
replace: (str: string) => str,
};
ctx.resultTransformer = new ResultTransformer(ctx.templateSrv);
});
describe('When nothing is returned', () => {
test('should return empty series', () => {
const response = {
status: 'success',
data: {
resultType: '',
result: (null as unknown) as DataQueryResponseData[],
},
};
const series = ctx.resultTransformer.transform({ data: response }, {});
expect(series).toEqual([]);
});
test('should return empty table', () => {
const response = {
status: 'success',
data: {
resultType: '',
result: (null as unknown) as DataQueryResponseData[],
},
};
const table = ctx.resultTransformer.transform({ data: response }, { format: 'table' });
expect(table).toMatchObject([{ type: 'table', rows: [] }]);
});
});
describe('When resultFormat is table', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
values: [[1443454528, '3846']],
},
{
metric: {
__name__: 'test',
instance: 'localhost:8080',
job: 'otherjob',
},
values: [[1443454529, '3847']],
},
],
},
};
it('should return table model', () => {
const table = ctx.resultTransformer.transformMetricDataToTable(response.data.result, 0, 'A');
expect(table.type).toBe('table');
expect(table.rows).toEqual([
[1443454528000, 'test', '', 'testjob', 3846],
[1443454529000, 'test', 'localhost:8080', 'otherjob', 3847],
]);
expect(table.columns).toMatchObject([
{ text: 'Time', type: 'time' },
{ text: '__name__', filterable: true },
{ text: 'instance', filterable: true },
{ text: 'job' },
{ text: 'Value' },
]);
expect(table.columns[4].filterable).toBeUndefined();
expect(table.refId).toBe('A');
});
it('should column title include refId if response count is more than 2', () => {
const table = ctx.resultTransformer.transformMetricDataToTable(response.data.result, 2, 'B');
expect(table.type).toBe('table');
expect(table.columns).toMatchObject([
{ text: 'Time', type: 'time' },
{ text: '__name__' },
{ text: 'instance' },
{ text: 'job' },
{ text: 'Value #B' },
]);
});
});
describe('When resultFormat is table and instant = true', () => {
const response = {
status: 'success',
data: {
resultType: 'vector',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
value: [1443454528, '3846'],
},
],
},
};
it('should return table model', () => {
const table = ctx.resultTransformer.transformMetricDataToTable(response.data.result);
expect(table.type).toBe('table');
expect(table.rows).toEqual([[1443454528000, 'test', 'testjob', 3846]]);
expect(table.columns).toMatchObject([
{ text: 'Time', type: 'time' },
{ text: '__name__' },
{ text: 'job' },
{ text: 'Value' },
]);
});
it('should return table model with le label values parsed as numbers', () => {
const table = ctx.resultTransformer.transformMetricDataToTable([
{
metric: { le: '102' },
value: [1594908838, '0'],
},
]);
expect(table.type).toBe('table');
expect(table.rows).toEqual([[1594908838000, 102, 0]]);
});
});
describe('When resultFormat is time series and instant = true', () => {
const response = {
status: 'success',
data: {
resultType: 'vector',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
value: [1443454528, '3846'],
},
],
},
};
it('should return time series', () => {
const timeSeries = ctx.resultTransformer.transform({ data: response }, {});
expect(timeSeries[0].target).toBe('test{job="testjob"}');
expect(timeSeries[0].title).toBe('test{job="testjob"}');
});
});
describe('When resultFormat is heatmap', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob', le: '1' },
values: [
[1445000010, '10'],
[1445000020, '10'],
[1445000030, '0'],
],
},
{
metric: { __name__: 'test', job: 'testjob', le: '2' },
values: [
[1445000010, '20'],
[1445000020, '10'],
[1445000030, '30'],
],
},
{
metric: { __name__: 'test', job: 'testjob', le: '3' },
values: [
[1445000010, '30'],
[1445000020, '10'],
[1445000030, '40'],
],
},
],
},
};
it('should convert cumulative histogram to regular', () => {
const options = {
format: 'heatmap',
start: 1445000010,
end: 1445000030,
legendFormat: '{{le}}',
};
const result = ctx.resultTransformer.transform({ data: response }, options);
expect(result).toEqual([
{
target: '1',
title: '1',
query: undefined,
datapoints: [
[10, 1445000010000],
[10, 1445000020000],
[0, 1445000030000],
],
tags: { __name__: 'test', job: 'testjob', le: '1' },
},
{
target: '2',
title: '2',
query: undefined,
datapoints: [
[10, 1445000010000],
[0, 1445000020000],
[30, 1445000030000],
],
tags: { __name__: 'test', job: 'testjob', le: '2' },
},
{
target: '3',
title: '3',
query: undefined,
datapoints: [
[10, 1445000010000],
[0, 1445000020000],
[10, 1445000030000],
],
tags: { __name__: 'test', job: 'testjob', le: '3' },
},
]);
});
it('should handle missing datapoints', () => {
const seriesList = [
{
datapoints: [
[1, 1000],
[2, 2000],
],
},
{
datapoints: [
[2, 1000],
[5, 2000],
[1, 3000],
],
},
{
datapoints: [
[3, 1000],
[7, 2000],
],
},
];
const expected = [
{
datapoints: [
[1, 1000],
[2, 2000],
],
},
{
datapoints: [
[1, 1000],
[3, 2000],
[1, 3000],
],
},
{
datapoints: [
[1, 1000],
[2, 2000],
],
},
];
const result = ctx.resultTransformer.transformToHistogramOverTime(seriesList);
expect(result).toEqual(expected);
});
it('should throw error when data in wrong format', () => {
const seriesList = [{ rows: [] as any[] }, { datapoints: [] as any[] }];
expect(() => {
ctx.resultTransformer.transformToHistogramOverTime(seriesList);
}).toThrow();
});
it('should throw error when prometheus returned non-timeseries', () => {
// should be { metric: {}, values: [] } for timeseries
const metricData = { metric: {}, value: [] as any[] };
expect(() => {
ctx.resultTransformer.transformMetricData(metricData, { step: 1 }, 1000, 2000);
}).toThrow();
});
});
describe('When resultFormat is time series', () => {
it('should transform matrix into timeseries', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
values: [
[0, '10'],
[1, '10'],
[2, '0'],
],
},
],
},
};
const options = {
format: 'timeseries',
start: 0,
end: 2,
refId: 'B',
};
const result = ctx.resultTransformer.transform({ data: response }, options);
expect(result).toEqual([
{
target: 'test{job="testjob"}',
title: 'test{job="testjob"}',
query: undefined,
datapoints: [
[10, 0],
[10, 1000],
[0, 2000],
],
tags: { job: 'testjob' },
refId: 'B',
},
]);
});
it('should fill timeseries with null values', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
values: [
[1, '10'],
[2, '0'],
],
},
],
},
};
const options = {
format: 'timeseries',
step: 1,
start: 0,
end: 2,
};
const result = ctx.resultTransformer.transform({ data: response }, options);
expect(result).toEqual([
{
target: 'test{job="testjob"}',
title: 'test{job="testjob"}',
query: undefined,
datapoints: [
[null, 0],
[10, 1000],
[0, 2000],
],
tags: { job: 'testjob' },
},
]);
});
it('should use __name__ label as series name', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
values: [
[1, '10'],
[2, '0'],
],
},
],
},
};
const options = {
format: 'timeseries',
step: 1,
start: 0,
end: 2,
};
const result = ctx.resultTransformer.transform({ data: response }, options);
expect(result[0].target).toEqual('test{job="testjob"}');
});
it('should set frame name to undefined if no __name__ label but there are other labels', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { job: 'testjob' },
values: [
[1, '10'],
[2, '0'],
],
},
],
},
};
const options = {
format: 'timeseries',
step: 1,
query: 'Some query',
start: 0,
end: 2,
};
const result = ctx.resultTransformer.transform({ data: response }, options);
expect(result[0].target).toBe('{job="testjob"}');
expect(result[0].tags.job).toEqual('testjob');
});
it('should align null values with step', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
values: [
[4, '10'],
[8, '10'],
],
},
],
},
};
const options = {
format: 'timeseries',
step: 2,
start: 0,
end: 8,
refId: 'A',
meta: { custom: { hello: '1' } },
};
const result = ctx.resultTransformer.transform({ data: response }, options);
expect(result).toEqual([
{
target: 'test{job="testjob"}',
title: 'test{job="testjob"}',
meta: {
custom: { hello: '1' },
},
query: undefined,
refId: 'A',
datapoints: [
[null, 0],
[null, 2000],
[10, 4000],
[null, 6000],
[10, 8000],
],
tags: { job: 'testjob' },
},
]);
});
});
});