grafana/pkg/tsdb/elasticsearch/response_parser.go
Dave Henderson 6262c56132
chore(perf): Pre-allocate where possible (enable prealloc linter) (#88952)
* chore(perf): Pre-allocate where possible (enable prealloc linter)

Signed-off-by: Dave Henderson <dave.henderson@grafana.com>

* fix TestAlertManagers_buildRedactedAMs

Signed-off-by: Dave Henderson <dave.henderson@grafana.com>

* prealloc a slice that appeared after rebase

Signed-off-by: Dave Henderson <dave.henderson@grafana.com>

---------

Signed-off-by: Dave Henderson <dave.henderson@grafana.com>
2024-06-14 14:16:36 -04:00

1362 lines
38 KiB
Go

package elasticsearch
import (
"context"
"encoding/json"
"errors"
"fmt"
"regexp"
"sort"
"strconv"
"strings"
"time"
"github.com/grafana/grafana-plugin-sdk-go/backend"
"github.com/grafana/grafana-plugin-sdk-go/data"
"github.com/grafana/grafana-plugin-sdk-go/experimental/errorsource"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/codes"
"go.opentelemetry.io/otel/trace"
"github.com/grafana/grafana/pkg/components/simplejson"
"github.com/grafana/grafana/pkg/infra/log"
"github.com/grafana/grafana/pkg/infra/tracing"
es "github.com/grafana/grafana/pkg/tsdb/elasticsearch/client"
"github.com/grafana/grafana/pkg/tsdb/elasticsearch/instrumentation"
)
const (
// Metric types
countType = "count"
percentilesType = "percentiles"
extendedStatsType = "extended_stats"
topMetricsType = "top_metrics"
// Bucket types
dateHistType = "date_histogram"
nestedType = "nested"
histogramType = "histogram"
filtersType = "filters"
termsType = "terms"
geohashGridType = "geohash_grid"
// Document types
rawDocumentType = "raw_document"
rawDataType = "raw_data"
// Logs type
logsType = "logs"
)
var searchWordsRegex = regexp.MustCompile(regexp.QuoteMeta(es.HighlightPreTagsString) + `(.*?)` + regexp.QuoteMeta(es.HighlightPostTagsString))
func parseResponse(ctx context.Context, responses []*es.SearchResponse, targets []*Query, configuredFields es.ConfiguredFields, keepLabelsInResponse bool, logger log.Logger, tracer tracing.Tracer) (*backend.QueryDataResponse, error) {
result := backend.QueryDataResponse{
Responses: backend.Responses{},
}
if responses == nil {
return &result, nil
}
ctx, span := tracer.Start(ctx, "datasource.elastic.parseResponse", trace.WithAttributes(
attribute.Int("responseLength", len(responses)),
))
defer span.End()
for i, res := range responses {
_, resSpan := tracer.Start(ctx, "datasource.elastic.parseResponse.response", trace.WithAttributes(
attribute.String("queryMetricType", targets[i].Metrics[0].Type),
))
start := time.Now()
target := targets[i]
if res.Error != nil {
mt, _ := json.Marshal(target)
me, _ := json.Marshal(res.Error)
resSpan.RecordError(errors.New(string(me)))
resSpan.SetStatus(codes.Error, string(me))
resSpan.End()
logger.Error("Processing error response from Elasticsearch", "error", string(me), "query", string(mt))
errResult := getErrorFromElasticResponse(res)
result.Responses[target.RefID] = errorsource.Response(errorsource.PluginError(errors.New(errResult), false))
continue
}
queryRes := backend.DataResponse{}
if isRawDataQuery(target) {
err := processRawDataResponse(res, target, configuredFields, &queryRes, logger)
if err != nil {
// TODO: This error never happens so we should remove it
return &backend.QueryDataResponse{}, err
}
result.Responses[target.RefID] = queryRes
} else if isRawDocumentQuery(target) {
err := processRawDocumentResponse(res, target, &queryRes, logger)
if err != nil {
// TODO: This error never happens so we should remove it
return &backend.QueryDataResponse{}, err
}
result.Responses[target.RefID] = queryRes
} else if isLogsQuery(target) {
err := processLogsResponse(res, target, configuredFields, &queryRes, logger)
if err != nil {
// TODO: This error never happens so we should remove it
return &backend.QueryDataResponse{}, err
}
result.Responses[target.RefID] = queryRes
} else {
// Process as metric query result
props := make(map[string]string)
err := processBuckets(res.Aggregations, target, &queryRes, props, 0)
logger.Debug("Processed metric query response")
if err != nil {
mt, _ := json.Marshal(target)
span.RecordError(err)
span.SetStatus(codes.Error, err.Error())
resSpan.RecordError(err)
resSpan.SetStatus(codes.Error, err.Error())
logger.Error("Error processing buckets", "error", err, "query", string(mt), "aggregationsLength", len(res.Aggregations), "stage", es.StageParseResponse)
instrumentation.UpdatePluginParsingResponseDurationSeconds(ctx, time.Since(start), "error")
resSpan.End()
return &backend.QueryDataResponse{}, err
}
nameFields(queryRes, target, keepLabelsInResponse)
trimDatapoints(queryRes, target)
result.Responses[target.RefID] = queryRes
}
instrumentation.UpdatePluginParsingResponseDurationSeconds(ctx, time.Since(start), "ok")
logger.Info("Finished processing of response", "duration", time.Since(start), "stage", es.StageParseResponse)
resSpan.End()
}
return &result, nil
}
func processLogsResponse(res *es.SearchResponse, target *Query, configuredFields es.ConfiguredFields, queryRes *backend.DataResponse, logger log.Logger) error {
propNames := make(map[string]bool)
docs := make([]map[string]interface{}, len(res.Hits.Hits))
searchWords := make(map[string]bool)
for hitIdx, hit := range res.Hits.Hits {
var flattened map[string]interface{}
var sourceString string
if hit["_source"] != nil {
flattened = flatten(hit["_source"].(map[string]interface{}), 10)
sourceMarshalled, err := json.Marshal(flattened)
if err != nil {
return err
}
sourceString = string(sourceMarshalled)
}
doc := map[string]interface{}{
"_id": hit["_id"],
"_type": hit["_type"],
"_index": hit["_index"],
"sort": hit["sort"],
"highlight": hit["highlight"],
// In case of logs query we want to have the raw source as a string field so it can be visualized in logs panel
"_source": sourceString,
}
for k, v := range flattened {
if configuredFields.LogLevelField != "" && k == configuredFields.LogLevelField {
doc["level"] = v
} else {
doc[k] = v
}
}
if hit["fields"] != nil {
source, ok := hit["fields"].(map[string]interface{})
if ok {
for k, v := range source {
doc[k] = v
}
}
}
// we are going to add an `id` field with the concatenation of `_id` and `_index`
_, ok := doc["id"]
if !ok {
doc["id"] = fmt.Sprintf("%v#%v", doc["_index"], doc["_id"])
}
for key := range doc {
propNames[key] = true
}
// Process highlight to searchWords
if highlights, ok := doc["highlight"].(map[string]interface{}); ok {
for _, highlight := range highlights {
if highlightList, ok := highlight.([]interface{}); ok {
for _, highlightValue := range highlightList {
str := fmt.Sprintf("%v", highlightValue)
matches := searchWordsRegex.FindAllStringSubmatch(str, -1)
for _, v := range matches {
searchWords[v[1]] = true
}
}
}
}
}
docs[hitIdx] = doc
}
sortedPropNames := sortPropNames(propNames, configuredFields, true)
fields := processDocsToDataFrameFields(docs, sortedPropNames, configuredFields)
frames := data.Frames{}
frame := data.NewFrame("", fields...)
setPreferredVisType(frame, data.VisTypeLogs)
setLogsCustomMeta(frame, searchWords, stringToIntWithDefaultValue(target.Metrics[0].Settings.Get("limit").MustString(), defaultSize))
frames = append(frames, frame)
queryRes.Frames = frames
logger.Debug("Processed log query response", "fieldsLength", len(frame.Fields))
return nil
}
func processRawDataResponse(res *es.SearchResponse, target *Query, configuredFields es.ConfiguredFields, queryRes *backend.DataResponse, logger log.Logger) error {
propNames := make(map[string]bool)
docs := make([]map[string]interface{}, len(res.Hits.Hits))
for hitIdx, hit := range res.Hits.Hits {
var flattened map[string]interface{}
if hit["_source"] != nil {
flattened = flatten(hit["_source"].(map[string]interface{}), 10)
}
doc := map[string]interface{}{
"_id": hit["_id"],
"_type": hit["_type"],
"_index": hit["_index"],
"sort": hit["sort"],
"highlight": hit["highlight"],
}
for k, v := range flattened {
doc[k] = v
}
if hit["fields"] != nil {
source, ok := hit["fields"].(map[string]interface{})
if ok {
for k, v := range source {
doc[k] = v
}
}
}
for key := range doc {
propNames[key] = true
}
docs[hitIdx] = doc
}
sortedPropNames := sortPropNames(propNames, configuredFields, false)
fields := processDocsToDataFrameFields(docs, sortedPropNames, configuredFields)
frames := data.Frames{}
frame := data.NewFrame("", fields...)
frames = append(frames, frame)
queryRes.Frames = frames
logger.Debug("Processed raw data query response", "fieldsLength", len(frame.Fields))
return nil
}
func processRawDocumentResponse(res *es.SearchResponse, target *Query, queryRes *backend.DataResponse, logger log.Logger) error {
docs := make([]map[string]interface{}, len(res.Hits.Hits))
for hitIdx, hit := range res.Hits.Hits {
doc := map[string]interface{}{
"_id": hit["_id"],
"_type": hit["_type"],
"_index": hit["_index"],
"sort": hit["sort"],
"highlight": hit["highlight"],
}
if hit["_source"] != nil {
source, ok := hit["_source"].(map[string]interface{})
if ok {
for k, v := range source {
doc[k] = v
}
}
}
if hit["fields"] != nil {
source, ok := hit["fields"].(map[string]interface{})
if ok {
for k, v := range source {
doc[k] = v
}
}
}
docs[hitIdx] = doc
}
fieldVector := make([]*json.RawMessage, len(res.Hits.Hits))
for i, doc := range docs {
bytes, err := json.Marshal(doc)
if err != nil {
// We skip docs that can't be marshalled
// should not happen
continue
}
value := json.RawMessage(bytes)
fieldVector[i] = &value
}
isFilterable := true
field := data.NewField(target.RefID, nil, fieldVector)
field.Config = &data.FieldConfig{Filterable: &isFilterable}
frames := data.Frames{}
frame := data.NewFrame(target.RefID, field)
frames = append(frames, frame)
queryRes.Frames = frames
logger.Debug("Processed raw document query response", "fieldsLength", len(frame.Fields))
return nil
}
func processDocsToDataFrameFields(docs []map[string]interface{}, propNames []string, configuredFields es.ConfiguredFields) []*data.Field {
size := len(docs)
isFilterable := true
allFields := make([]*data.Field, len(propNames))
timeString := ""
timeStringOk := false
for propNameIdx, propName := range propNames {
// Special handling for time field
if propName == configuredFields.TimeField {
timeVector := make([]*time.Time, size)
for i, doc := range docs {
// Check if time field is a string
timeString, timeStringOk = doc[configuredFields.TimeField].(string)
// If not, it might be an array with one time string
if !timeStringOk {
timeList, ok := doc[configuredFields.TimeField].([]interface{})
if !ok || len(timeList) != 1 {
continue
}
// Check if the first element is a string
timeString, timeStringOk = timeList[0].(string)
if !timeStringOk {
continue
}
}
timeValue, err := time.Parse(time.RFC3339Nano, timeString)
if err != nil {
// We skip time values that cannot be parsed
continue
} else {
timeVector[i] = &timeValue
}
}
field := data.NewField(configuredFields.TimeField, nil, timeVector)
field.Config = &data.FieldConfig{Filterable: &isFilterable}
allFields[propNameIdx] = field
continue
}
propNameValue := findTheFirstNonNilDocValueForPropName(docs, propName)
switch propNameValue.(type) {
// We are checking for default data types values (float64, int, bool, string)
// and default to json.RawMessage if we cannot find any of them
case float64:
allFields[propNameIdx] = createFieldOfType[float64](docs, propName, size, isFilterable)
case int:
allFields[propNameIdx] = createFieldOfType[int](docs, propName, size, isFilterable)
case string:
allFields[propNameIdx] = createFieldOfType[string](docs, propName, size, isFilterable)
case bool:
allFields[propNameIdx] = createFieldOfType[bool](docs, propName, size, isFilterable)
default:
fieldVector := make([]*json.RawMessage, size)
for i, doc := range docs {
bytes, err := json.Marshal(doc[propName])
if err != nil {
// We skip values that cannot be marshalled
continue
}
value := json.RawMessage(bytes)
fieldVector[i] = &value
}
field := data.NewField(propName, nil, fieldVector)
field.Config = &data.FieldConfig{Filterable: &isFilterable}
allFields[propNameIdx] = field
}
}
return allFields
}
func processBuckets(aggs map[string]interface{}, target *Query,
queryResult *backend.DataResponse, props map[string]string, depth int) error {
var err error
maxDepth := len(target.BucketAggs) - 1
aggIDs := make([]string, 0)
for k := range aggs {
aggIDs = append(aggIDs, k)
}
sort.Strings(aggIDs)
for _, aggID := range aggIDs {
v := aggs[aggID]
aggDef, _ := findAgg(target, aggID)
esAgg := simplejson.NewFromAny(v)
if aggDef == nil {
continue
}
if aggDef.Type == nestedType {
err = processBuckets(esAgg.MustMap(), target, queryResult, props, depth+1)
if err != nil {
return err
}
continue
}
if depth == maxDepth {
if aggDef.Type == dateHistType {
err = processMetrics(esAgg, target, queryResult, props)
} else {
err = processAggregationDocs(esAgg, aggDef, target, queryResult, props)
}
if err != nil {
return err
}
} else {
for _, b := range esAgg.Get("buckets").MustArray() {
bucket := simplejson.NewFromAny(b)
newProps := make(map[string]string)
for k, v := range props {
newProps[k] = v
}
if key, err := bucket.Get("key").String(); err == nil {
newProps[aggDef.Field] = key
} else if key, err := bucket.Get("key").Int64(); err == nil {
newProps[aggDef.Field] = strconv.FormatInt(key, 10)
}
if key, err := bucket.Get("key_as_string").String(); err == nil {
newProps[aggDef.Field] = key
}
err = processBuckets(bucket.MustMap(), target, queryResult, newProps, depth+1)
if err != nil {
return err
}
}
buckets := esAgg.Get("buckets").MustMap()
bucketKeys := make([]string, 0)
for k := range buckets {
bucketKeys = append(bucketKeys, k)
}
sort.Strings(bucketKeys)
for _, bucketKey := range bucketKeys {
bucket := simplejson.NewFromAny(buckets[bucketKey])
newProps := make(map[string]string)
for k, v := range props {
newProps[k] = v
}
newProps["filter"] = bucketKey
err = processBuckets(bucket.MustMap(), target, queryResult, newProps, depth+1)
if err != nil {
return err
}
}
}
}
return nil
}
func newTimeSeriesFrame(timeData []time.Time, tags map[string]string, values []*float64) *data.Frame {
frame := data.NewFrame("",
data.NewField(data.TimeSeriesTimeFieldName, nil, timeData),
data.NewField(data.TimeSeriesValueFieldName, tags, values))
frame.Meta = &data.FrameMeta{
Type: data.FrameTypeTimeSeriesMulti,
}
return frame
}
func processCountMetric(buckets []*simplejson.Json, props map[string]string) (data.Frames, error) {
tags := make(map[string]string, len(props))
timeVector := make([]time.Time, 0, len(buckets))
values := make([]*float64, 0, len(buckets))
for _, bucket := range buckets {
value := castToFloat(bucket.Get("doc_count"))
timeValue, err := getAsTime(bucket.Get("key"))
if err != nil {
return nil, err
}
timeVector = append(timeVector, timeValue)
values = append(values, value)
}
for k, v := range props {
tags[k] = v
}
tags["metric"] = countType
return data.Frames{newTimeSeriesFrame(timeVector, tags, values)}, nil
}
func processPercentilesMetric(metric *MetricAgg, buckets []*simplejson.Json, props map[string]string) (data.Frames, error) {
if len(buckets) == 0 {
return data.Frames{}, nil
}
firstBucket := buckets[0]
percentiles := firstBucket.GetPath(metric.ID, "values").MustMap()
percentileKeys := make([]string, 0)
for k := range percentiles {
percentileKeys = append(percentileKeys, k)
}
sort.Strings(percentileKeys)
frames := data.Frames{}
for _, percentileName := range percentileKeys {
tags := make(map[string]string, len(props))
timeVector := make([]time.Time, 0, len(buckets))
values := make([]*float64, 0, len(buckets))
for k, v := range props {
tags[k] = v
}
tags["metric"] = "p" + percentileName
tags["field"] = metric.Field
for _, bucket := range buckets {
value := castToFloat(bucket.GetPath(metric.ID, "values", percentileName))
key := bucket.Get("key")
timeValue, err := getAsTime(key)
if err != nil {
return nil, err
}
timeVector = append(timeVector, timeValue)
values = append(values, value)
}
frames = append(frames, newTimeSeriesFrame(timeVector, tags, values))
}
return frames, nil
}
func processTopMetricsMetric(metric *MetricAgg, buckets []*simplejson.Json, props map[string]string) (data.Frames, error) {
metrics := metric.Settings.Get("metrics").MustArray()
frames := data.Frames{}
for _, metricField := range metrics {
tags := make(map[string]string, len(props))
timeVector := make([]time.Time, 0, len(buckets))
values := make([]*float64, 0, len(buckets))
for k, v := range props {
tags[k] = v
}
tags["field"] = metricField.(string)
tags["metric"] = "top_metrics"
for _, bucket := range buckets {
stats := bucket.GetPath(metric.ID, "top")
timeValue, err := getAsTime(bucket.Get("key"))
if err != nil {
return nil, err
}
timeVector = append(timeVector, timeValue)
for _, stat := range stats.MustArray() {
stat := stat.(map[string]interface{})
metrics, hasMetrics := stat["metrics"]
if hasMetrics {
metrics := metrics.(map[string]interface{})
metricValue, hasMetricValue := metrics[metricField.(string)]
if hasMetricValue && metricValue != nil {
v := metricValue.(float64)
values = append(values, &v)
}
}
}
}
frames = append(frames, newTimeSeriesFrame(timeVector, tags, values))
}
return frames, nil
}
func processExtendedStatsMetric(metric *MetricAgg, buckets []*simplejson.Json, props map[string]string) (data.Frames, error) {
metaKeys := make([]string, 0)
meta := metric.Meta.MustMap()
for k := range meta {
metaKeys = append(metaKeys, k)
}
sort.Strings(metaKeys)
frames := data.Frames{}
for _, statName := range metaKeys {
v := meta[statName]
if enabled, ok := v.(bool); !ok || !enabled {
continue
}
tags := make(map[string]string, len(props))
timeVector := make([]time.Time, 0, len(buckets))
values := make([]*float64, 0, len(buckets))
for k, v := range props {
tags[k] = v
}
tags["metric"] = statName
tags["field"] = metric.Field
for _, bucket := range buckets {
timeValue, err := getAsTime(bucket.Get("key"))
if err != nil {
return nil, err
}
var value *float64
switch statName {
case "std_deviation_bounds_upper":
value = castToFloat(bucket.GetPath(metric.ID, "std_deviation_bounds", "upper"))
case "std_deviation_bounds_lower":
value = castToFloat(bucket.GetPath(metric.ID, "std_deviation_bounds", "lower"))
default:
value = castToFloat(bucket.GetPath(metric.ID, statName))
}
timeVector = append(timeVector, timeValue)
values = append(values, value)
}
labels := tags
frames = append(frames, newTimeSeriesFrame(timeVector, labels, values))
}
return frames, nil
}
func processDefaultMetric(metric *MetricAgg, buckets []*simplejson.Json, props map[string]string) (data.Frames, error) {
tags := make(map[string]string, len(props))
timeVector := make([]time.Time, 0, len(buckets))
values := make([]*float64, 0, len(buckets))
for k, v := range props {
tags[k] = v
}
tags["metric"] = metric.Type
tags["field"] = metric.Field
tags["metricId"] = metric.ID
for _, bucket := range buckets {
timeValue, err := getAsTime(bucket.Get("key"))
if err != nil {
return nil, err
}
valueObj, err := bucket.Get(metric.ID).Map()
if err != nil {
continue
}
var value *float64
if _, ok := valueObj["normalized_value"]; ok {
value = castToFloat(bucket.GetPath(metric.ID, "normalized_value"))
} else {
value = castToFloat(bucket.GetPath(metric.ID, "value"))
}
timeVector = append(timeVector, timeValue)
values = append(values, value)
}
return data.Frames{newTimeSeriesFrame(timeVector, tags, values)}, nil
}
// nolint:gocyclo
func processMetrics(esAgg *simplejson.Json, target *Query, query *backend.DataResponse,
props map[string]string) error {
frames := data.Frames{}
esAggBuckets := esAgg.Get("buckets").MustArray()
jsonBuckets := make([]*simplejson.Json, len(esAggBuckets))
for i, v := range esAggBuckets {
jsonBuckets[i] = simplejson.NewFromAny(v)
}
for _, metric := range target.Metrics {
if metric.Hide {
continue
}
switch metric.Type {
case countType:
countFrames, err := processCountMetric(jsonBuckets, props)
if err != nil {
return fmt.Errorf("error processing count metric: %w", err)
}
frames = append(frames, countFrames...)
case percentilesType:
percentileFrames, err := processPercentilesMetric(metric, jsonBuckets, props)
if err != nil {
return fmt.Errorf("error processing percentiles metric: %w", err)
}
frames = append(frames, percentileFrames...)
case topMetricsType:
topMetricsFrames, err := processTopMetricsMetric(metric, jsonBuckets, props)
if err != nil {
return fmt.Errorf("error processing top metrics metric: %w", err)
}
frames = append(frames, topMetricsFrames...)
case extendedStatsType:
extendedStatsFrames, err := processExtendedStatsMetric(metric, jsonBuckets, props)
if err != nil {
return fmt.Errorf("error processing extended stats metric: %w", err)
}
frames = append(frames, extendedStatsFrames...)
default:
defaultFrames, err := processDefaultMetric(metric, jsonBuckets, props)
if err != nil {
return fmt.Errorf("error processing default metric: %w", err)
}
frames = append(frames, defaultFrames...)
}
}
if query.Frames != nil {
oldFrames := query.Frames
frames = append(oldFrames, frames...)
}
query.Frames = frames
return nil
}
func processAggregationDocs(esAgg *simplejson.Json, aggDef *BucketAgg, target *Query,
queryResult *backend.DataResponse, props map[string]string) error {
propKeys := createPropKeys(props)
frames := data.Frames{}
fields := createFields(queryResult.Frames, propKeys)
for _, v := range esAgg.Get("buckets").MustArray() {
bucket := simplejson.NewFromAny(v)
var values []interface{}
found := false
for _, field := range fields {
for _, propKey := range propKeys {
if field.Name == propKey {
value := props[propKey]
field.Append(&value)
}
}
if field.Name == aggDef.Field {
found = true
if key, err := bucket.Get("key").String(); err == nil {
field.Append(&key)
} else {
f, err := bucket.Get("key").Float64()
if err != nil {
return fmt.Errorf("error appending bucket key to existing field with name %s: %w", field.Name, err)
}
field.Append(&f)
}
}
}
if !found {
var aggDefField *data.Field
if key, err := bucket.Get("key").String(); err == nil {
aggDefField = extractDataField(aggDef.Field, &key)
aggDefField.Append(&key)
} else {
f, err := bucket.Get("key").Float64()
if err != nil {
return fmt.Errorf("error appending bucket key to new field with name %s: %w", aggDef.Field, err)
}
aggDefField = extractDataField(aggDef.Field, &f)
aggDefField.Append(&f)
}
fields = append(fields, aggDefField)
}
for _, metric := range target.Metrics {
switch metric.Type {
case countType:
addMetricValueToFields(&fields, values, getMetricName(metric.Type), castToFloat(bucket.Get("doc_count")))
case extendedStatsType:
addExtendedStatsToFields(&fields, bucket, metric, values)
case percentilesType:
addPercentilesToFields(&fields, bucket, metric, values)
case topMetricsType:
addTopMetricsToFields(&fields, bucket, metric, values)
default:
addOtherMetricsToFields(&fields, bucket, metric, values, target)
}
}
var dataFields []*data.Field
dataFields = append(dataFields, fields...)
frames = data.Frames{
&data.Frame{
Fields: dataFields,
}}
}
queryResult.Frames = frames
return nil
}
func extractDataField(name string, v interface{}) *data.Field {
var field *data.Field
switch v.(type) {
case *string:
field = data.NewField(name, nil, []*string{})
case *float64:
field = data.NewField(name, nil, []*float64{})
default:
field = &data.Field{}
}
isFilterable := true
field.Config = &data.FieldConfig{Filterable: &isFilterable}
return field
}
func trimDatapoints(queryResult backend.DataResponse, target *Query) {
var histogram *BucketAgg
for _, bucketAgg := range target.BucketAggs {
if bucketAgg.Type == dateHistType {
histogram = bucketAgg
break
}
}
if histogram == nil {
return
}
trimEdges, err := castToInt(histogram.Settings.Get("trimEdges"))
if err != nil {
return
}
frames := queryResult.Frames
for _, frame := range frames {
for _, field := range frame.Fields {
if field.Len() > trimEdges*2 {
// first we delete the first "trim" items
for i := 0; i < trimEdges; i++ {
field.Delete(0)
}
// then we delete the last "trim" items
for i := 0; i < trimEdges; i++ {
field.Delete(field.Len() - 1)
}
}
}
}
}
// we sort the label's pairs by the label-key,
// and return the label-values
func getSortedLabelValues(labels data.Labels) []string {
keys := make([]string, 0, len(labels))
for key := range labels {
keys = append(keys, key)
}
sort.Strings(keys)
values := make([]string, len(keys))
for i, key := range keys {
values[i] = labels[key]
}
return values
}
func nameFields(queryResult backend.DataResponse, target *Query, keepLabelsInResponse bool) {
set := make(map[string]struct{})
frames := queryResult.Frames
for _, v := range frames {
for _, vv := range v.Fields {
if metricType, exists := vv.Labels["metric"]; exists {
if _, ok := set[metricType]; !ok {
set[metricType] = struct{}{}
}
}
}
}
metricTypeCount := len(set)
for _, frame := range frames {
if frame.Meta != nil && frame.Meta.Type == data.FrameTypeTimeSeriesMulti {
// if it is a time-series-multi, it means it has two columns, one is "time",
// another is "number"
valueField := frame.Fields[1]
fieldName := getFieldName(*valueField, target, metricTypeCount)
// If we need to keep the labels in the response, to prevent duplication in names and to keep
// backward compatibility with alerting and expressions we use DisplayNameFromDS
if keepLabelsInResponse {
if valueField.Config == nil {
valueField.Config = &data.FieldConfig{}
}
valueField.Config.DisplayNameFromDS = fieldName
// If we don't need to keep labels (how frontend mode worked), we use frame.Name and remove labels
} else {
valueField.Labels = nil
frame.Name = fieldName
}
}
}
}
var aliasPatternRegex = regexp.MustCompile(`\{\{([\s\S]+?)\}\}`)
func getFieldName(dataField data.Field, target *Query, metricTypeCount int) string {
metricType := dataField.Labels["metric"]
metricName := getMetricName(metricType)
delete(dataField.Labels, "metric")
field := ""
if v, ok := dataField.Labels["field"]; ok {
field = v
delete(dataField.Labels, "field")
}
if target.Alias != "" {
frameName := target.Alias
subMatches := aliasPatternRegex.FindAllStringSubmatch(target.Alias, -1)
for _, subMatch := range subMatches {
group := subMatch[0]
if len(subMatch) > 1 {
group = subMatch[1]
}
if strings.Index(group, "term ") == 0 {
frameName = strings.Replace(frameName, subMatch[0], dataField.Labels[group[5:]], 1)
}
if v, ok := dataField.Labels[group]; ok {
frameName = strings.Replace(frameName, subMatch[0], v, 1)
}
if group == "metric" {
frameName = strings.Replace(frameName, subMatch[0], metricName, 1)
}
if group == "field" {
frameName = strings.Replace(frameName, subMatch[0], field, 1)
}
}
return frameName
}
// todo, if field and pipelineAgg
if isPipelineAgg(metricType) {
if metricType != "" && isPipelineAggWithMultipleBucketPaths(metricType) {
metricID := ""
if v, ok := dataField.Labels["metricId"]; ok {
metricID = v
}
for _, metric := range target.Metrics {
if metric.ID == metricID {
metricName = metric.Settings.Get("script").MustString()
for name, pipelineAgg := range metric.PipelineVariables {
for _, m := range target.Metrics {
if m.ID == pipelineAgg {
metricName = strings.ReplaceAll(metricName, "params."+name, describeMetric(m.Type, m.Field))
}
}
}
}
}
} else {
if field != "" {
found := false
for _, metric := range target.Metrics {
if metric.ID == field {
metricName += " " + describeMetric(metric.Type, metric.Field)
found = true
}
}
if !found {
metricName = "Unset"
}
}
}
} else if field != "" {
metricName += " " + field
}
delete(dataField.Labels, "metricId")
if len(dataField.Labels) == 0 {
return metricName
}
name := ""
for _, v := range getSortedLabelValues(dataField.Labels) {
name += v + " "
}
if metricTypeCount == 1 {
return strings.TrimSpace(name)
}
return strings.TrimSpace(name) + " " + metricName
}
func getMetricName(metric string) string {
if text, ok := metricAggType[metric]; ok {
return text
}
if text, ok := extendedStats[metric]; ok {
return text
}
return metric
}
func castToInt(j *simplejson.Json) (int, error) {
i, err := j.Int()
if err == nil {
return i, nil
}
s, err := j.String()
if err != nil {
return 0, err
}
v, err := strconv.Atoi(s)
if err != nil {
return 0, err
}
return v, nil
}
func castToFloat(j *simplejson.Json) *float64 {
f, err := j.Float64()
if err == nil {
return &f
}
if s, err := j.String(); err == nil {
if strings.ToLower(s) == "nan" {
return nil
}
if v, err := strconv.ParseFloat(s, 64); err == nil {
return &v
}
}
return nil
}
func getAsTime(j *simplejson.Json) (time.Time, error) {
// these are stored as numbers
number, err := j.Float64()
if err != nil {
return time.Time{}, err
}
return time.UnixMilli(int64(number)).UTC(), nil
}
func findAgg(target *Query, aggID string) (*BucketAgg, error) {
for _, v := range target.BucketAggs {
if aggID == v.ID {
return v, nil
}
}
return nil, errors.New("can't found aggDef, aggID:" + aggID)
}
func getErrorFromElasticResponse(response *es.SearchResponse) string {
var errorString string
json := simplejson.NewFromAny(response.Error)
reason := json.Get("reason").MustString()
rootCauseReason := json.Get("root_cause").GetIndex(0).Get("reason").MustString()
causedByReason := json.Get("caused_by").Get("reason").MustString()
switch {
case rootCauseReason != "":
errorString = rootCauseReason
case reason != "":
errorString = reason
case causedByReason != "":
errorString = causedByReason
default:
errorString = "Unknown elasticsearch error response"
}
return errorString
}
// flatten flattens multi-level objects to single level objects. It uses dot notation to join keys.
func flatten(target map[string]interface{}, maxDepth int) map[string]interface{} {
// On frontend maxDepth wasn't used but as we are processing on backend
// let's put a limit to avoid infinite loop. 10 was chosen arbitrary.
output := make(map[string]interface{})
step(0, maxDepth, target, "", output)
return output
}
func step(currentDepth, maxDepth int, target map[string]interface{}, prev string, output map[string]interface{}) {
nextDepth := currentDepth + 1
for key, value := range target {
newKey := strings.Trim(prev+"."+key, ".")
v, ok := value.(map[string]interface{})
if ok && len(v) > 0 && currentDepth < maxDepth {
step(nextDepth, maxDepth, v, newKey, output)
} else {
output[newKey] = value
}
}
}
// sortPropNames orders propNames so that timeField is first (if it exists), log message field is second
// if shouldSortLogMessageField is true, and rest of propNames are ordered alphabetically
func sortPropNames(propNames map[string]bool, configuredFields es.ConfiguredFields, shouldSortLogMessageField bool) []string {
hasTimeField := false
hasLogMessageField := false
var sortedPropNames []string
for k := range propNames {
if configuredFields.TimeField != "" && k == configuredFields.TimeField {
hasTimeField = true
} else if shouldSortLogMessageField && configuredFields.LogMessageField != "" && k == configuredFields.LogMessageField {
hasLogMessageField = true
} else {
sortedPropNames = append(sortedPropNames, k)
}
}
sort.Strings(sortedPropNames)
if hasLogMessageField {
sortedPropNames = append([]string{configuredFields.LogMessageField}, sortedPropNames...)
}
if hasTimeField {
sortedPropNames = append([]string{configuredFields.TimeField}, sortedPropNames...)
}
return sortedPropNames
}
// findTheFirstNonNilDocValueForPropName finds the first non-nil value for propName in docs. If none of the values are non-nil, it returns the value of propName in the first doc.
func findTheFirstNonNilDocValueForPropName(docs []map[string]interface{}, propName string) interface{} {
for _, doc := range docs {
if doc[propName] != nil {
return doc[propName]
}
}
return docs[0][propName]
}
func createFieldOfType[T int | float64 | bool | string](docs []map[string]interface{}, propName string, size int, isFilterable bool) *data.Field {
fieldVector := make([]*T, size)
for i, doc := range docs {
value, ok := doc[propName].(T)
if !ok {
continue
}
fieldVector[i] = &value
}
field := data.NewField(propName, nil, fieldVector)
field.Config = &data.FieldConfig{Filterable: &isFilterable}
return field
}
func setPreferredVisType(frame *data.Frame, visType data.VisType) {
if frame.Meta == nil {
frame.Meta = &data.FrameMeta{}
}
frame.Meta.PreferredVisualization = visType
}
func setLogsCustomMeta(frame *data.Frame, searchWords map[string]bool, limit int) {
i := 0
searchWordsList := make([]string, len(searchWords))
for searchWord := range searchWords {
searchWordsList[i] = searchWord
i++
}
sort.Strings(searchWordsList)
if frame.Meta == nil {
frame.Meta = &data.FrameMeta{}
}
if frame.Meta.Custom == nil {
frame.Meta.Custom = map[string]interface{}{}
}
frame.Meta.Custom = map[string]interface{}{
"searchWords": searchWordsList,
"limit": limit,
}
}
func createFields(frames data.Frames, propKeys []string) []*data.Field {
var fields []*data.Field
// Otherwise use the fields from frames
if frames != nil {
for _, frame := range frames {
fields = append(fields, frame.Fields...)
}
// If we have no frames, we create fields from propKeys
} else {
for _, propKey := range propKeys {
fields = append(fields, data.NewField(propKey, nil, []*string{}))
}
}
return fields
}
func getSortedKeys(data map[string]interface{}) []string {
keys := make([]string, 0, len(data))
for k := range data {
keys = append(keys, k)
}
sort.Strings(keys)
return keys
}
func createPropKeys(props map[string]string) []string {
propKeys := make([]string, 0)
for k := range props {
propKeys = append(propKeys, k)
}
sort.Strings(propKeys)
return propKeys
}
func addMetricValueToFields(fields *[]*data.Field, values []interface{}, metricName string, value *float64) {
index := -1
for i, f := range *fields {
if f.Name == metricName {
index = i
break
}
}
var field data.Field
if index == -1 {
field = *data.NewField(metricName, nil, []*float64{})
*fields = append(*fields, &field)
} else {
field = *(*fields)[index]
}
field.Append(value)
}
func addPercentilesToFields(fields *[]*data.Field, bucket *simplejson.Json, metric *MetricAgg, values []interface{}) {
percentiles := bucket.GetPath(metric.ID, "values")
for _, percentileName := range getSortedKeys(percentiles.MustMap()) {
percentileValue := percentiles.Get(percentileName).MustFloat64()
addMetricValueToFields(fields, values, fmt.Sprintf("p%v %v", percentileName, metric.Field), &percentileValue)
}
}
func addExtendedStatsToFields(fields *[]*data.Field, bucket *simplejson.Json, metric *MetricAgg, values []interface{}) {
metaKeys := make([]string, 0)
meta := metric.Meta.MustMap()
for k := range meta {
metaKeys = append(metaKeys, k)
}
sort.Strings(metaKeys)
for _, statName := range metaKeys {
v := meta[statName]
if enabled, ok := v.(bool); !ok || !enabled {
continue
}
var value *float64
switch statName {
case "std_deviation_bounds_upper":
value = castToFloat(bucket.GetPath(metric.ID, "std_deviation_bounds", "upper"))
case "std_deviation_bounds_lower":
value = castToFloat(bucket.GetPath(metric.ID, "std_deviation_bounds", "lower"))
default:
value = castToFloat(bucket.GetPath(metric.ID, statName))
}
addMetricValueToFields(fields, values, getMetricName(metric.Type), value)
break
}
}
func addTopMetricsToFields(fields *[]*data.Field, bucket *simplejson.Json, metric *MetricAgg, values []interface{}) {
baseName := getMetricName(metric.Type)
metrics := metric.Settings.Get("metrics").MustStringArray()
for _, metricField := range metrics {
// If we selected more than one metric we also add each metric name
metricName := baseName
if len(metrics) > 1 {
metricName += " " + metricField
}
top := bucket.GetPath(metric.ID, "top").MustArray()
metrics, hasMetrics := top[0].(map[string]interface{})["metrics"]
if hasMetrics {
metrics := metrics.(map[string]interface{})
metricValue, hasMetricValue := metrics[metricField]
if hasMetricValue && metricValue != nil {
v := metricValue.(float64)
addMetricValueToFields(fields, values, metricName, &v)
}
}
}
}
func addOtherMetricsToFields(fields *[]*data.Field, bucket *simplejson.Json, metric *MetricAgg, values []interface{}, target *Query) {
metricName := getMetricName(metric.Type)
otherMetrics := make([]*MetricAgg, 0)
for _, m := range target.Metrics {
// To other metrics we add metric of the same type that are not the current metric
if m.ID != metric.ID && m.Type == metric.Type {
otherMetrics = append(otherMetrics, m)
}
}
if len(otherMetrics) > 0 {
metricName += " " + metric.Field
// We check if we have metric with the same type and same field name
// If so, append metric.ID to the metric name
for _, m := range otherMetrics {
if m.Field == metric.Field {
metricName += " " + metric.ID
break
}
}
if metric.Type == "bucket_script" {
// Use the formula in the column name
metricName = metric.Settings.Get("script").MustString("")
}
}
addMetricValueToFields(fields, values, metricName, castToFloat(bucket.GetPath(metric.ID, "value")))
}