grafana/public/app/core/logs_model.ts
Lukas Siatka df48d1c19f
Explore: Adds Loki explore query editor (#21497)
* Explore: updates grafana-data explore query field props with explore mode

* Explore: updates query row to pass down explore mode to query fields

* Explore: adds LokiExploreQueryEditor

* Explore: updates loki query field form to render children

* Explore: adds loki explore extra field component

* Explore: adds extra field element to loki query field form

* Explore: updates loki explore query editor to use extra field element

* Explore: moves ExploreMode to grafana-data

* Explore: updates query row limit string

* Explore: adds maxLines to DataQuery

* Explore: adds maxLines to loki datasource runRangeQueryWithFallback

* Explore: adds onChangeQueryLimit to LokiExploreQueryEditor

* Explore: updates loki explore query editor to render extra field only in logs mode

* Explore: fixes query limits for live and legacy queries

* Explore: fixes result processor max lines limit in get logs result

* Explore: fixes Loki datasource limit test

* Explore: removes unnecessary ExploreMode from Loki language provider

* Explore: fixes formatting

* Explore: updates grafana-data datasource types - replaces strings with explore mode enum

* Explore: updates loki explore query field props to take ReactNode

* Explore: updates the way we calculate loki query lines limit to fall back to 0 lines on negative or invalid input instead of datasource maxLines

* Explore: updates result processor get logs result method to avoid counting invalid/negative line limits

* Explore: updates loki result transformer to process only an appropriate slice of a result instead of an entire one

* Explore: adds a method for query limit preprocessing/mapping

* Explore: updates loki datasource run range query with fallback method to use options.maxDataPoints in dashboards

* Explore: removes unnecessary maxlineslimt from getLogsResult in resultProcessor

* Explore: moves line limit to metadata

* Explore: adds an ability to specify input type of extra field

* Explore: updates LokiExploreQueryEditor - adds an input type

* Explore: updates LokiExploreQueryEditor to run queries when maxLines is positive

* Explore: fixes failing import of ExploreMode

* Explore: fixes reducers test imports formatting

* Explore: updates Loki extra field with min value set to 0

* Explore: exports LokiExploreExtraFieldProps

* Explore: adds render test of LokiExploreQueryEditor

* Explore: adds LokiExploreQueryEditor snapshot

* Explore: updates LokiExploreQueryEditor onChangeQueryLimit method to prevent it from running when query input is empty - fixes cheatsheet display issue

* Explore: updates Loki editor snapshots

* Explore: fixes typo in test set name in LokiExploreQueryEditor

* Explore: adds a render test of LokiExploreExtraField

* Explore: fixes typo in LokiExploreQueryEditor

* Explore: updates LokiExploreQueryEditor snapshot due to timezone issues

* Explore: updates LokiExploreExtraField to export both functional component and a version using memo

* Explore: updates LokiExploreQueryEditor to export both functional component and memoized function

* Explore: updates LokiExploreQueryEditor - removes unnecessary react fragment

* Explore: updates LokiExploreQueryEditor snapshot

* Explore: adds LokiExploreQueryEditor tests for different explore mode cases

* Explore: fixes Loki datasource and result transformer

* Explore: updates LokiExploreQueryEditor snapshot

* Explore: updates LokiExploreQueryEditor tests and test setup

* Explore: updates LokiExploreQueryEditor - refactors component

* Explore: updates LokiExploreQueryEditor to use default import from LokiExploreExtraField

* Explore: updates LokiExploreQueryEditor snapshot

* Explore: fixes formatting

* Explore: updates LokiExploreQueryEditor max lines change

* Explore: updates LokiExploreQueryEditor tests checking ExtraFieldElement

* Explore: adds mock loki datasource to LokiExploreQueryEditor

* Explore: updates LokiExploreQueryEditor test mock - adds language provider

* Explore: updates LokiExploreQueryEditor snapshot

* Explore: updates Loki ResultTransformer to filter out rows on limit - logic to be moved into a component with new form styles

* Explore: updates LokiExploreQueryEditor tests
2020-02-06 12:34:52 +00:00

388 lines
11 KiB
TypeScript

import _ from 'lodash';
import { colors, ansicolor } from '@grafana/ui';
import {
Labels,
LogLevel,
DataFrame,
findCommonLabels,
findUniqueLabels,
getLogLevel,
FieldType,
getLogLevelFromKey,
LogRowModel,
LogsModel,
LogsMetaItem,
LogsMetaKind,
LogsDedupStrategy,
GraphSeriesXY,
dateTime,
toUtc,
NullValueMode,
toDataFrame,
FieldCache,
FieldWithIndex,
getFlotPairs,
TimeZone,
getDisplayProcessor,
} from '@grafana/data';
import { getThemeColor } from 'app/core/utils/colors';
import { hasAnsiCodes } from 'app/core/utils/text';
import { sortInAscendingOrder, deduplicateLogRowsById } from 'app/core/utils/explore';
import { getGraphSeriesModel } from 'app/plugins/panel/graph2/getGraphSeriesModel';
export const LogLevelColor = {
[LogLevel.critical]: colors[7],
[LogLevel.warning]: colors[1],
[LogLevel.error]: colors[4],
[LogLevel.info]: colors[0],
[LogLevel.debug]: colors[5],
[LogLevel.trace]: colors[2],
[LogLevel.unknown]: getThemeColor('#8e8e8e', '#dde4ed'),
};
const isoDateRegexp = /\d{4}-[01]\d-[0-3]\dT[0-2]\d:[0-5]\d:[0-6]\d[,\.]\d+([+-][0-2]\d:[0-5]\d|Z)/g;
function isDuplicateRow(row: LogRowModel, other: LogRowModel, strategy?: LogsDedupStrategy): boolean {
switch (strategy) {
case LogsDedupStrategy.exact:
// Exact still strips dates
return row.entry.replace(isoDateRegexp, '') === other.entry.replace(isoDateRegexp, '');
case LogsDedupStrategy.numbers:
return row.entry.replace(/\d/g, '') === other.entry.replace(/\d/g, '');
case LogsDedupStrategy.signature:
return row.entry.replace(/\w/g, '') === other.entry.replace(/\w/g, '');
default:
return false;
}
}
export function dedupLogRows(rows: LogRowModel[], strategy?: LogsDedupStrategy): LogRowModel[] {
if (strategy === LogsDedupStrategy.none) {
return rows;
}
return rows.reduce((result: LogRowModel[], row: LogRowModel, index) => {
const rowCopy = { ...row };
const previous = result[result.length - 1];
if (index > 0 && isDuplicateRow(row, previous, strategy)) {
previous.duplicates!++;
} else {
rowCopy.duplicates = 0;
result.push(rowCopy);
}
return result;
}, []);
}
export function filterLogLevels(logRows: LogRowModel[], hiddenLogLevels: Set<LogLevel>): LogRowModel[] {
if (hiddenLogLevels.size === 0) {
return logRows;
}
return logRows.filter((row: LogRowModel) => {
return !hiddenLogLevels.has(row.logLevel);
});
}
export function makeSeriesForLogs(rows: LogRowModel[], intervalMs: number, timeZone: TimeZone): GraphSeriesXY[] {
// currently interval is rangeMs / resolution, which is too low for showing series as bars.
// need at least 10px per bucket, so we multiply interval by 10. Should be solved higher up the chain
// when executing queries & interval calculated and not here but this is a temporary fix.
// intervalMs = intervalMs * 10;
// Graph time series by log level
const seriesByLevel: any = {};
const bucketSize = intervalMs * 10;
const seriesList: any[] = [];
const sortedRows = rows.sort(sortInAscendingOrder);
for (const row of sortedRows) {
let series = seriesByLevel[row.logLevel];
if (!series) {
seriesByLevel[row.logLevel] = series = {
lastTs: null,
datapoints: [],
alias: row.logLevel,
target: row.logLevel,
color: LogLevelColor[row.logLevel],
};
seriesList.push(series);
}
// align time to bucket size - used Math.floor for calculation as time of the bucket
// must be in the past (before Date.now()) to be displayed on the graph
const time = Math.floor(row.timeEpochMs / bucketSize) * bucketSize;
// Entry for time
if (time === series.lastTs) {
series.datapoints[series.datapoints.length - 1][0]++;
} else {
series.datapoints.push([1, time]);
series.lastTs = time;
}
// add zero to other levels to aid stacking so each level series has same number of points
for (const other of seriesList) {
if (other !== series && other.lastTs !== time) {
other.datapoints.push([0, time]);
other.lastTs = time;
}
}
}
return seriesList.map((series, i) => {
series.datapoints.sort((a: number[], b: number[]) => {
return a[1] - b[1];
});
// EEEP: converts GraphSeriesXY to DataFrame and back again!
const data = toDataFrame(series);
const points = getFlotPairs({
xField: data.fields[1],
yField: data.fields[0],
nullValueMode: NullValueMode.Null,
});
const timeField = data.fields[1];
timeField.display = getDisplayProcessor({
field: timeField,
timeZone,
});
const valueField = data.fields[0];
valueField.config = {
...valueField.config,
color: series.color,
};
const graphSeries: GraphSeriesXY = {
color: series.color,
label: series.alias,
data: points,
isVisible: true,
yAxis: {
index: 1,
min: 0,
tickDecimals: 0,
},
seriesIndex: i,
timeField,
valueField,
// for now setting the time step to be 0,
// and handle the bar width by setting lineWidth instead of barWidth in flot options
timeStep: 0,
};
return graphSeries;
});
}
function isLogsData(series: DataFrame) {
return series.fields.some(f => f.type === FieldType.time) && series.fields.some(f => f.type === FieldType.string);
}
/**
* Convert dataFrame into LogsModel which consists of creating separate array of log rows and metrics series. Metrics
* series can be either already included in the dataFrame or will be computed from the log rows.
* @param dataFrame
* @param intervalMs In case there are no metrics series, we use this for computing it from log rows.
*/
export function dataFrameToLogsModel(dataFrame: DataFrame[], intervalMs: number, timeZone: TimeZone): LogsModel {
const { logSeries, metricSeries } = separateLogsAndMetrics(dataFrame);
const logsModel = logSeriesToLogsModel(logSeries);
if (logsModel) {
if (metricSeries.length === 0) {
// Create metrics from logs
logsModel.series = makeSeriesForLogs(logsModel.rows, intervalMs, timeZone);
} else {
// We got metrics in the dataFrame so process those
logsModel.series = getGraphSeriesModel(
metricSeries,
timeZone,
{},
{ showBars: true, showLines: false, showPoints: false },
{
asTable: false,
isVisible: true,
placement: 'under',
}
);
}
return logsModel;
}
return {
hasUniqueLabels: false,
rows: [],
meta: [],
series: [],
};
}
function separateLogsAndMetrics(dataFrame: DataFrame[]) {
const metricSeries: DataFrame[] = [];
const logSeries: DataFrame[] = [];
for (const series of dataFrame) {
if (isLogsData(series)) {
logSeries.push(series);
continue;
}
metricSeries.push(series);
}
return { logSeries, metricSeries };
}
const logTimeFormat = 'YYYY-MM-DD HH:mm:ss';
interface LogFields {
series: DataFrame;
timeField: FieldWithIndex;
stringField: FieldWithIndex;
logLevelField?: FieldWithIndex;
idField?: FieldWithIndex;
}
/**
* Converts dataFrames into LogsModel. This involves merging them into one list, sorting them and computing metadata
* like common labels.
*/
export function logSeriesToLogsModel(logSeries: DataFrame[]): LogsModel | undefined {
if (logSeries.length === 0) {
return undefined;
}
const allLabels: Labels[] = [];
// Find the fields we care about and collect all labels
const allSeries: LogFields[] = logSeries.map(series => {
const fieldCache = new FieldCache(series);
// Assume the first string field in the dataFrame is the message. This was right so far but probably needs some
// more explicit checks.
const stringField = fieldCache.getFirstFieldOfType(FieldType.string);
if (stringField.labels) {
allLabels.push(stringField.labels);
}
return {
series,
timeField: fieldCache.getFirstFieldOfType(FieldType.time),
stringField,
logLevelField: fieldCache.getFieldByName('level'),
idField: getIdField(fieldCache),
};
});
const commonLabels = allLabels.length > 0 ? findCommonLabels(allLabels) : {};
const rows: LogRowModel[] = [];
let hasUniqueLabels = false;
for (const info of allSeries) {
const { timeField, stringField, logLevelField, idField, series } = info;
const labels = stringField.labels;
const uniqueLabels = findUniqueLabels(labels, commonLabels);
if (Object.keys(uniqueLabels).length > 0) {
hasUniqueLabels = true;
}
let seriesLogLevel: LogLevel | undefined = undefined;
if (labels && Object.keys(labels).indexOf('level') !== -1) {
seriesLogLevel = getLogLevelFromKey(labels['level']);
}
for (let j = 0; j < series.length; j++) {
const ts = timeField.values.get(j);
const time = dateTime(ts);
const messageValue: unknown = stringField.values.get(j);
// This should be string but sometimes isn't (eg elastic) because the dataFrame is not strongly typed.
const message: string = typeof messageValue === 'string' ? messageValue : JSON.stringify(messageValue);
const hasAnsi = hasAnsiCodes(message);
const searchWords = series.meta && series.meta.searchWords ? series.meta.searchWords : [];
let logLevel = LogLevel.unknown;
if (logLevelField) {
logLevel = getLogLevelFromKey(logLevelField.values.get(j));
} else if (seriesLogLevel) {
logLevel = seriesLogLevel;
} else {
logLevel = getLogLevel(message);
}
rows.push({
entryFieldIndex: stringField.index,
rowIndex: j,
dataFrame: series,
logLevel,
timeFromNow: time.fromNow(),
timeEpochMs: time.valueOf(),
timeLocal: time.format(logTimeFormat),
timeUtc: toUtc(time.valueOf()).format(logTimeFormat),
uniqueLabels,
hasAnsi,
searchWords,
entry: hasAnsi ? ansicolor.strip(message) : message,
raw: message,
labels: stringField.labels,
uid: idField ? idField.values.get(j) : j.toString(),
});
}
}
const deduplicatedLogRows = deduplicateLogRowsById(rows);
// Meta data to display in status
const meta: LogsMetaItem[] = [];
if (_.size(commonLabels) > 0) {
meta.push({
label: 'Common labels',
value: commonLabels,
kind: LogsMetaKind.LabelsMap,
});
}
const limits = logSeries.filter(series => series.meta && series.meta.limit);
const limitValue = Object.values(
limits.reduce((acc: any, elem: any) => {
acc[elem.refId] = elem.meta.limit;
return acc;
}, {})
).reduce((acc: number, elem: any) => (acc += elem), 0);
if (limits.length > 0) {
meta.push({
label: 'Limit',
value: `${limitValue} (${deduplicatedLogRows.length} returned)`,
kind: LogsMetaKind.String,
});
}
return {
hasUniqueLabels,
meta,
rows: deduplicatedLogRows,
};
}
function getIdField(fieldCache: FieldCache): FieldWithIndex | undefined {
const idFieldNames = ['id'];
for (const fieldName of idFieldNames) {
const idField = fieldCache.getFieldByName(fieldName);
if (idField) {
return idField;
}
}
return undefined;
}