grafana/public/app/plugins/datasource/elasticsearch/ElasticResponse.test.ts
Leon Sorokin b24ba7b7ae
FieldValues: Use plain arrays instead of Vector (part 3 of 2) (#66612)
Co-authored-by: Ryan McKinley <ryantxu@gmail.com>
2023-04-20 17:59:18 +03:00

1559 lines
44 KiB
TypeScript

import { DataFrame, DataFrameView, Field, FieldCache, FieldType, KeyValue, MutableDataFrame } from '@grafana/data';
import flatten from 'app/core/utils/flatten';
import { ElasticResponse } from './ElasticResponse';
import { highlightTags } from './queryDef';
import { ElasticsearchQuery } from './types';
function getTimeField(frame: DataFrame): Field {
const field = frame.fields[0];
if (field.type !== FieldType.time) {
throw new Error('first field should be the time-field');
}
return field;
}
function getValueField(frame: DataFrame): Field {
const field = frame.fields[1];
if (field.type !== FieldType.number) {
throw new Error('second field should be the number-field');
}
return field;
}
describe('ElasticResponse', () => {
let targets: ElasticsearchQuery[];
let response: {
responses: unknown[];
};
let result: {
data: DataFrame[];
};
describe('refId matching', () => {
// We default to the old table structure to ensure backward compatibility,
// therefore we only process responses as DataFrames when there's at least one
// raw_data (new) query type.
// We should test if refId gets populated wether there's such type of query or not
const countQuery: MockedQueryData = {
target: {
refId: 'COUNT_GROUPBY_DATE_HISTOGRAM',
metrics: [{ type: 'count', id: 'c_1' }],
bucketAggs: [{ type: 'date_histogram', field: '@timestamp', id: 'c_2' }],
} as ElasticsearchQuery,
response: {
aggregations: {
c_2: {
buckets: [
{
doc_count: 10,
key: 1000,
},
],
},
},
},
};
const countGroupByHistogramQuery: MockedQueryData = {
target: {
refId: 'COUNT_GROUPBY_HISTOGRAM',
metrics: [{ type: 'count', id: 'h_3' }],
bucketAggs: [{ type: 'histogram', field: 'bytes', id: 'h_4' }],
},
response: {
aggregations: {
h_4: {
buckets: [{ doc_count: 1, key: 1000 }],
},
},
},
};
const rawDocumentQuery: MockedQueryData = {
target: {
refId: 'RAW_DOC',
metrics: [{ type: 'raw_document', id: 'r_5' }],
bucketAggs: [],
},
response: {
hits: {
total: 2,
hits: [
{
_id: '5',
_type: 'type',
_index: 'index',
_source: { sourceProp: 'asd' },
fields: { fieldProp: 'field' },
},
{
_source: { sourceProp: 'asd2' },
fields: { fieldProp: 'field2' },
},
],
},
},
};
const percentilesQuery: MockedQueryData = {
target: {
refId: 'PERCENTILE',
metrics: [{ type: 'percentiles', settings: { percents: ['75', '90'] }, id: 'p_1' }],
bucketAggs: [{ type: 'date_histogram', field: '@timestamp', id: 'p_3' }],
},
response: {
aggregations: {
p_3: {
buckets: [
{
p_1: { values: { '75': 3.3, '90': 5.5 } },
doc_count: 10,
key: 1000,
},
{
p_1: { values: { '75': 2.3, '90': 4.5 } },
doc_count: 15,
key: 2000,
},
],
},
},
},
};
const extendedStatsQuery: MockedQueryData = {
target: {
refId: 'EXTENDEDSTATS',
metrics: [
{
type: 'extended_stats',
meta: { max: true, std_deviation_bounds_upper: true },
id: 'e_1',
},
],
bucketAggs: [
{ type: 'terms', field: 'host', id: 'e_3' },
{ type: 'date_histogram', id: 'e_4' },
],
},
response: {
aggregations: {
e_3: {
buckets: [
{
key: 'server1',
e_4: {
buckets: [
{
e_1: {
max: 10.2,
min: 5.5,
std_deviation_bounds: { upper: 3, lower: -2 },
},
doc_count: 10,
key: 1000,
},
],
},
},
{
key: 'server2',
e_4: {
buckets: [
{
e_1: {
max: 10.2,
min: 5.5,
std_deviation_bounds: { upper: 3, lower: -2 },
},
doc_count: 10,
key: 1000,
},
],
},
},
],
},
},
},
};
const commonTargets = [
{ ...countQuery.target },
{ ...countGroupByHistogramQuery.target },
{ ...rawDocumentQuery.target },
{ ...percentilesQuery.target },
{ ...extendedStatsQuery.target },
];
const commonResponses = [
{ ...countQuery.response },
{ ...countGroupByHistogramQuery.response },
{ ...rawDocumentQuery.response },
{ ...percentilesQuery.response },
{ ...extendedStatsQuery.response },
];
describe('When processing responses as DataFrames (raw_data query present)', () => {
beforeEach(() => {
targets = [
...commonTargets,
// Raw Data Query
{
refId: 'D',
metrics: [{ type: 'raw_data', id: '6' }],
bucketAggs: [],
},
];
response = {
responses: [
...commonResponses,
// Raw Data Query
{
hits: {
total: {
relation: 'eq',
value: 1,
},
hits: [
{
_id: '6',
_type: '_doc',
_index: 'index',
_source: { sourceProp: 'asd' },
},
],
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should add the correct refId to each returned series', () => {
expect(result.data[0].refId).toBe(countQuery.target.refId);
expect(result.data[1].refId).toBe(countGroupByHistogramQuery.target.refId);
expect(result.data[2].refId).toBe(rawDocumentQuery.target.refId);
expect(result.data[3].refId).toBe(percentilesQuery.target.refId);
expect(result.data[4].refId).toBe(percentilesQuery.target.refId);
expect(result.data[5].refId).toBe(extendedStatsQuery.target.refId);
// Raw Data query
expect(result.data[result.data.length - 1].refId).toBe('D');
});
});
describe('When NOT processing responses as DataFrames (raw_data query NOT present)', () => {
beforeEach(() => {
targets = [...commonTargets];
response = {
responses: [...commonResponses],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should add the correct refId to each returned series', () => {
expect(result.data[0].refId).toBe(countQuery.target.refId);
expect(result.data[1].refId).toBe(countGroupByHistogramQuery.target.refId);
expect(result.data[2].refId).toBe(rawDocumentQuery.target.refId);
expect(result.data[3].refId).toBe(percentilesQuery.target.refId);
expect(result.data[4].refId).toBe(percentilesQuery.target.refId);
expect(result.data[5].refId).toBe(extendedStatsQuery.target.refId);
});
});
});
describe('simple query and count', () => {
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }],
bucketAggs: [{ type: 'date_histogram', field: '@timestamp', id: '2' }],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
doc_count: 10,
key: 1000,
},
{
doc_count: 15,
key: 2000,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 1 series', () => {
expect(result.data.length).toBe(1);
const frame = result.data[0];
expect(frame.name).toBe('Count');
expect(frame.length).toBe(2);
expect(getTimeField(frame).values[0]).toBe(1000);
expect(getValueField(frame).values[0]).toBe(10);
});
});
describe('simple query count & avg aggregation', () => {
let result: {
data: DataFrame[];
};
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [
{ type: 'count', id: '1' },
{ type: 'avg', field: 'value', id: '2' },
],
bucketAggs: [{ type: 'date_histogram', field: '@timestamp', id: '3' }],
},
];
response = {
responses: [
{
aggregations: {
'3': {
buckets: [
{
'2': { value: 88 },
doc_count: 10,
key: 1000,
},
{
'2': { value: 99 },
doc_count: 15,
key: 2000,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 2 series', () => {
expect(result.data.length).toBe(2);
const frame1 = result.data[0];
const frame2 = result.data[1];
expect(frame1.length).toBe(2);
expect(getValueField(frame1).values[0]).toBe(10);
expect(getTimeField(frame1).values[0]).toBe(1000);
expect(frame2.name).toBe('Average value');
expect(getValueField(frame2).values).toEqual([88, 99]);
});
});
describe('single group by query one metric', () => {
let result: {
data: DataFrame[];
};
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }],
bucketAggs: [
{ type: 'terms', field: 'host', id: '2' },
{ type: 'date_histogram', field: '@timestamp', id: '3' },
],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
'3': {
buckets: [
{ doc_count: 1, key: 1000 },
{ doc_count: 3, key: 2000 },
],
},
doc_count: 4,
key: 'server1',
},
{
'3': {
buckets: [
{ doc_count: 2, key: 1000 },
{ doc_count: 8, key: 2000 },
],
},
doc_count: 10,
key: 'server2',
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 2 series', () => {
expect(result.data.length).toBe(2);
const frame1 = result.data[0];
const frame2 = result.data[1];
expect(frame1.length).toBe(2);
expect(frame1.name).toBe('server1');
expect(frame2.name).toBe('server2');
});
});
describe('single group by query two metrics', () => {
let result: {
data: DataFrame[];
};
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [
{ type: 'count', id: '1' },
{ type: 'avg', field: '@value', id: '4' },
],
bucketAggs: [
{ type: 'terms', field: 'host', id: '2' },
{ type: 'date_histogram', field: '@timestamp', id: '3' },
],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
'3': {
buckets: [
{ '4': { value: 10 }, doc_count: 1, key: 1000 },
{ '4': { value: 12 }, doc_count: 3, key: 2000 },
],
},
doc_count: 4,
key: 'server1',
},
{
'3': {
buckets: [
{ '4': { value: 20 }, doc_count: 1, key: 1000 },
{ '4': { value: 32 }, doc_count: 3, key: 2000 },
],
},
doc_count: 10,
key: 'server2',
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 2 series', () => {
expect(result.data.length).toBe(4);
expect(result.data[0].length).toBe(2);
expect(result.data[0].name).toBe('server1 Count');
expect(result.data[1].name).toBe('server1 Average @value');
expect(result.data[2].name).toBe('server2 Count');
expect(result.data[3].name).toBe('server2 Average @value');
});
});
describe('with percentiles ', () => {
let result: {
data: DataFrame[];
};
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'percentiles', settings: { percents: ['75', '90'] }, id: '1', field: '@value' }],
bucketAggs: [{ type: 'date_histogram', field: '@timestamp', id: '3' }],
},
];
response = {
responses: [
{
aggregations: {
'3': {
buckets: [
{
'1': { values: { '75': 3.3, '90': 5.5 } },
doc_count: 10,
key: 1000,
},
{
'1': { values: { '75': 2.3, '90': 4.5 } },
doc_count: 15,
key: 2000,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 2 series', () => {
expect(result.data.length).toBe(2);
expect(result.data[0].length).toBe(2);
expect(result.data[0].name).toBe('p75 @value');
expect(result.data[1].name).toBe('p90 @value');
expect(getValueField(result.data[0]).values[0]).toBe(3.3);
expect(getTimeField(result.data[0]).values[0]).toBe(1000);
expect(getValueField(result.data[1]).values[1]).toBe(4.5);
});
});
describe('with extended_stats', () => {
let result: {
data: DataFrame[];
};
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [
{
type: 'extended_stats',
meta: { max: true, std_deviation_bounds_upper: true },
id: '1',
field: '@value',
},
],
bucketAggs: [
{ type: 'terms', field: 'host', id: '3' },
{ type: 'date_histogram', id: '4' },
],
},
];
response = {
responses: [
{
aggregations: {
'3': {
buckets: [
{
key: 'server1',
'4': {
buckets: [
{
'1': {
max: 10.2,
min: 5.5,
std_deviation_bounds: { upper: 3, lower: -2 },
},
doc_count: 10,
key: 1000,
},
],
},
},
{
key: 'server2',
'4': {
buckets: [
{
'1': {
max: 10.2,
min: 5.5,
std_deviation_bounds: { upper: 3, lower: -2 },
},
doc_count: 10,
key: 1000,
},
],
},
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 4 series', () => {
expect(result.data.length).toBe(4);
expect(result.data[0].length).toBe(1);
expect(result.data[0].name).toBe('server1 Max @value');
expect(result.data[1].name).toBe('server1 Std Dev Upper @value');
expect(getValueField(result.data[0]).values[0]).toBe(10.2);
expect(getValueField(result.data[1]).values[0]).toBe(3);
});
});
describe('with top_metrics', () => {
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [
{
type: 'top_metrics',
settings: {
order: 'top',
orderBy: '@timestamp',
metrics: ['@value', '@anotherValue'],
},
id: '1',
},
],
bucketAggs: [{ type: 'date_histogram', id: '2' }],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
key: new Date('2021-01-01T00:00:00.000Z').valueOf(),
key_as_string: '2021-01-01T00:00:00.000Z',
'1': {
top: [{ sort: ['2021-01-01T00:00:00.000Z'], metrics: { '@value': 1, '@anotherValue': 2 } }],
},
},
{
key: new Date('2021-01-01T00:00:10.000Z').valueOf(),
key_as_string: '2021-01-01T00:00:10.000Z',
'1': {
top: [{ sort: ['2021-01-01T00:00:10.000Z'], metrics: { '@value': 1, '@anotherValue': 2 } }],
},
},
],
},
},
},
],
};
});
it('should return 2 series', () => {
const result = new ElasticResponse(targets, response).getTimeSeries();
expect(result.data.length).toBe(2);
const firstSeries = result.data[0];
expect(firstSeries.name).toBe('Top Metrics @value');
expect(firstSeries.length).toBe(2);
expect(getTimeField(firstSeries).values).toEqual([
new Date('2021-01-01T00:00:00.000Z').valueOf(),
new Date('2021-01-01T00:00:10.000Z').valueOf(),
]);
expect(getValueField(firstSeries).values).toEqual([1, 1]);
const secondSeries = result.data[1];
expect(secondSeries.name).toBe('Top Metrics @anotherValue');
expect(secondSeries.length).toBe(2);
expect(getTimeField(secondSeries).values).toEqual([
new Date('2021-01-01T00:00:00.000Z').valueOf(),
new Date('2021-01-01T00:00:10.000Z').valueOf(),
]);
expect(getValueField(secondSeries).values).toEqual([2, 2]);
});
});
describe('single group by with alias pattern', () => {
let result: {
data: DataFrame[];
};
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }],
alias: '{{term @host}} {{metric}} and {{not_exist}} {{@host}}',
bucketAggs: [
{ type: 'terms', field: '@host', id: '2' },
{ type: 'date_histogram', field: '@timestamp', id: '3' },
],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
'3': {
buckets: [
{ doc_count: 1, key: 1000 },
{ doc_count: 3, key: 2000 },
],
},
doc_count: 4,
key: 'server1',
},
{
'3': {
buckets: [
{ doc_count: 2, key: 1000 },
{ doc_count: 8, key: 2000 },
],
},
doc_count: 10,
key: 'server2',
},
{
'3': {
buckets: [
{ doc_count: 2, key: 1000 },
{ doc_count: 8, key: 2000 },
],
},
doc_count: 10,
key: 0,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 2 series', () => {
expect(result.data.length).toBe(3);
expect(result.data[0].length).toBe(2);
expect(result.data[0].name).toBe('server1 Count and {{not_exist}} server1');
expect(result.data[1].name).toBe('server2 Count and {{not_exist}} server2');
expect(result.data[2].name).toBe('0 Count and {{not_exist}} 0');
});
});
describe('histogram response', () => {
let result: {
data: DataFrame[];
};
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }],
bucketAggs: [{ type: 'histogram', field: 'bytes', id: '3' }],
},
];
response = {
responses: [
{
aggregations: {
'3': {
buckets: [
{ doc_count: 1, key: 1000 },
{ doc_count: 3, key: 2000 },
{ doc_count: 2, key: 1000 },
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return dataframe with byte and count', () => {
expect(result.data[0].length).toBe(3);
const { fields } = result.data[0];
expect(fields.length).toBe(2);
expect(fields[0].name).toBe('bytes');
expect(fields[0].config).toEqual({ filterable: true });
expect(fields[1].name).toBe('Count');
expect(fields[1].config).toEqual({});
});
});
describe('with two filters agg', () => {
let result: {
data: DataFrame[];
};
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }],
bucketAggs: [
{
id: '2',
type: 'filters',
settings: {
filters: [
{ query: '@metric:cpu', label: '' },
{ query: '@metric:logins.count', label: '' },
],
},
},
{ type: 'date_histogram', field: '@timestamp', id: '3' },
],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: {
'@metric:cpu': {
'3': {
buckets: [
{ doc_count: 1, key: 1000 },
{ doc_count: 3, key: 2000 },
],
},
},
'@metric:logins.count': {
'3': {
buckets: [
{ doc_count: 2, key: 1000 },
{ doc_count: 8, key: 2000 },
],
},
},
},
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 2 series', () => {
expect(result.data.length).toBe(2);
expect(result.data[0].length).toBe(2);
expect(result.data[0].name).toBe('@metric:cpu');
expect(result.data[1].name).toBe('@metric:logins.count');
});
});
describe('with dropfirst and last aggregation', () => {
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [
{ type: 'avg', id: '1', field: '@value' },
{ type: 'count', id: '3' },
],
bucketAggs: [
{
id: '2',
type: 'date_histogram',
field: 'host',
settings: { trimEdges: '1' },
},
],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
'1': { value: 1000 },
key: 1,
doc_count: 369,
},
{
'1': { value: 2000 },
key: 2,
doc_count: 200,
},
{
'1': { value: 2000 },
key: 3,
doc_count: 200,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should remove first and last value', () => {
expect(result.data.length).toBe(2);
expect(result.data[0].length).toBe(1);
});
});
describe('No group by time', () => {
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [
{ type: 'avg', id: '1', field: '@value' },
{ type: 'count', id: '3' },
],
bucketAggs: [{ id: '2', type: 'terms', field: 'host' }],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
'1': { value: 1000 },
key: 'server-1',
doc_count: 369,
},
{
'1': { value: 2000 },
key: 'server-2',
doc_count: 200,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return dataframe', () => {
expect(result.data.length).toBe(1);
expect(result.data[0].length).toBe(2);
expect(result.data[0].fields.length).toBe(3);
const field1 = result.data[0].fields[0];
const field2 = result.data[0].fields[1];
const field3 = result.data[0].fields[2];
expect(field1.values).toEqual(['server-1', 'server-2']);
expect(field2.values).toEqual([1000, 2000]);
expect(field3.values).toEqual([369, 200]);
});
});
describe('No group by time with percentiles ', () => {
let result: {
data: DataFrame[];
};
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'percentiles', field: 'value', settings: { percents: ['75', '90'] }, id: '1' }],
bucketAggs: [{ type: 'terms', field: 'id', id: '3' }],
},
];
response = {
responses: [
{
aggregations: {
'3': {
buckets: [
{
'1': { values: { '75': 3.3, '90': 5.5 } },
doc_count: 10,
key: 'id1',
},
{
'1': { values: { '75': 2.3, '90': 4.5 } },
doc_count: 15,
key: 'id2',
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return dataframe', () => {
expect(result.data.length).toBe(1);
expect(result.data[0].length).toBe(2);
const field1 = result.data[0].fields[0];
const field2 = result.data[0].fields[1];
const field3 = result.data[0].fields[2];
expect(field1.name).toBe('id');
expect(field2.name).toBe('p75 value');
expect(field3.name).toBe('p90 value');
expect(field1.values).toEqual(['id1', 'id2']);
expect(field2.values).toEqual([3.3, 2.3]);
expect(field3.values).toEqual([5.5, 4.5]);
});
});
describe('Multiple metrics of same type', () => {
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [
{ type: 'avg', id: '1', field: 'test' },
{ type: 'avg', id: '2', field: 'test2' },
],
bucketAggs: [{ id: '2', type: 'terms', field: 'host' }],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
'1': { value: 1000 },
'2': { value: 3000 },
key: 'server-1',
doc_count: 369,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should include field in metric name', () => {
expect(result.data[0].length).toBe(1);
expect(result.data[0].fields.length).toBe(3);
expect(result.data[0].fields[0].values).toEqual(['server-1']);
expect(result.data[0].fields[1].values).toEqual([1000]);
expect(result.data[0].fields[2].values).toEqual([3000]);
});
});
describe('Raw documents query', () => {
let result: {
data: DataFrame[];
};
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'raw_document', id: '1' }],
bucketAggs: [],
},
];
response = {
responses: [
{
hits: {
total: 100,
hits: [
{
_id: '1',
_type: 'type',
_index: 'index',
_source: { sourceProp: 'asd' },
fields: { fieldProp: 'field' },
},
{
_source: { sourceProp: 'asd2' },
fields: { fieldProp: 'field2' },
},
],
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return raw_document formatted data', () => {
expect(result.data.length).toBe(1);
const frame = result.data[0];
const { fields } = frame;
expect(fields.length).toBe(1);
const field = fields[0];
expect(field.type === FieldType.other);
const values = field.values;
expect(values.length).toBe(2);
expect(values[0].sourceProp).toBe('asd');
expect(values[0].fieldProp).toBe('field');
});
});
describe('with bucket_script ', () => {
let result: {
data: DataFrame[];
};
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [
{ id: '1', type: 'sum', field: '@value' },
{ id: '3', type: 'max', field: '@value' },
{
id: '4',
pipelineVariables: [
{ name: 'var1', pipelineAgg: '1' },
{ name: 'var2', pipelineAgg: '3' },
],
settings: { script: 'params.var1 * params.var2' },
type: 'bucket_script',
},
],
bucketAggs: [{ type: 'date_histogram', field: '@timestamp', id: '2' }],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
1: { value: 2 },
3: { value: 3 },
4: { value: 6 },
doc_count: 60,
key: 1000,
},
{
1: { value: 3 },
3: { value: 4 },
4: { value: 12 },
doc_count: 60,
key: 2000,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 3 series', () => {
expect(result.data.length).toBe(3);
expect(result.data[0].length).toBe(2);
expect(result.data[0].name).toBe('Sum @value');
expect(result.data[1].name).toBe('Max @value');
expect(result.data[2].name).toBe('Sum @value * Max @value');
expect(getValueField(result.data[0]).values[0]).toBe(2);
expect(getValueField(result.data[1]).values[0]).toBe(3);
expect(getValueField(result.data[2]).values[0]).toBe(6);
expect(getValueField(result.data[0]).values[1]).toBe(3);
expect(getValueField(result.data[1]).values[1]).toBe(4);
expect(getValueField(result.data[2]).values[1]).toBe(12);
});
});
describe('terms with bucket_script and two scripts', () => {
let result: {
data: DataFrame[];
};
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [
{ id: '1', type: 'sum', field: '@value' },
{ id: '3', type: 'max', field: '@value' },
{
id: '4',
pipelineVariables: [
{ name: 'var1', pipelineAgg: '1' },
{ name: 'var2', pipelineAgg: '3' },
],
settings: { script: 'params.var1 * params.var2' },
type: 'bucket_script',
},
{
id: '5',
pipelineVariables: [
{ name: 'var1', pipelineAgg: '1' },
{ name: 'var2', pipelineAgg: '3' },
],
settings: { script: 'params.var1 * params.var2 * 4' },
type: 'bucket_script',
},
],
bucketAggs: [{ type: 'terms', field: '@timestamp', id: '2' }],
},
];
response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
1: { value: 2 },
3: { value: 3 },
4: { value: 6 },
5: { value: 24 },
doc_count: 60,
key: 1000,
},
{
1: { value: 3 },
3: { value: 4 },
4: { value: 12 },
5: { value: 48 },
doc_count: 60,
key: 2000,
},
],
},
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should return 2 rows with 5 columns', () => {
const frame = result.data[0];
expect(frame.length).toBe(2);
const { fields } = frame;
expect(fields.length).toBe(5);
expect(fields[0].values).toEqual([1000, 2000]);
expect(fields[1].values).toEqual([2, 3]);
expect(fields[2].values).toEqual([3, 4]);
expect(fields[3].values).toEqual([6, 12]);
expect(fields[4].values).toEqual([24, 48]);
});
});
describe('Raw Data Query', () => {
beforeEach(() => {
targets = [
{
refId: 'A',
metrics: [{ type: 'raw_data', id: '1' }],
bucketAggs: [],
timeField: '@timestamp',
},
];
response = {
responses: [
{
hits: {
total: {
relation: 'eq',
value: 1,
},
hits: [
{
_id: '1',
_type: '_doc',
_index: 'index',
_source: { sourceProp: 'asd', '@timestamp': '2019-01-01T00:00:00Z' },
},
],
},
},
],
};
result = new ElasticResponse(targets, response).getTimeSeries();
});
it('should create dataframes with filterable fields', () => {
for (const field of result.data[0].fields) {
expect(field.config.filterable).toBe(true);
}
});
it('should have time field values in DateTime format', () => {
const timeField = result.data[0].fields.find((field) => field.name === '@timestamp');
expect(timeField).toBeDefined();
expect(timeField?.values[0]).toBe(1546300800000);
});
});
describe('simple logs query and count', () => {
const targets: ElasticsearchQuery[] = [
{
refId: 'A',
metrics: [{ type: 'count', id: '1' }],
bucketAggs: [{ type: 'date_histogram', settings: { interval: 'auto' }, id: '2' }],
key: 'Q-1561369883389-0.7611823271062786-0',
query: 'hello AND message',
timeField: '@timestamp',
},
];
const response = {
responses: [
{
aggregations: {
'2': {
buckets: [
{
doc_count: 10,
key: 1000,
},
{
doc_count: 15,
key: 2000,
},
],
},
},
hits: {
hits: [
{
_id: 'fdsfs',
_type: '_doc',
_index: 'mock-index',
_source: {
'@timestamp': '2019-06-24T09:51:19.765Z',
host: 'djisaodjsoad',
number: 1,
message: 'hello, i am a message',
level: 'debug',
fields: {
lvl: 'debug',
},
},
highlight: {
message: [
`${highlightTags.pre}hello${highlightTags.post}, i am a ${highlightTags.pre}message${highlightTags.post}`,
],
},
},
{
_id: 'kdospaidopa',
_type: '_doc',
_index: 'mock-index',
_source: {
'@timestamp': '2019-06-24T09:52:19.765Z',
host: 'dsalkdakdop',
number: 2,
message: 'hello, i am also message',
level: 'error',
fields: {
lvl: 'info',
},
},
highlight: {
message: [
`${highlightTags.pre}hello${highlightTags.post}, i am a ${highlightTags.pre}message${highlightTags.post}`,
],
},
},
],
},
},
],
};
it('should return histogram aggregation and documents', () => {
const result = new ElasticResponse(targets, response).getLogs();
expect(result.data.length).toBe(2);
const logResults = result.data[0] as MutableDataFrame;
expect(logResults).toHaveProperty('meta');
expect(logResults.meta).toEqual({
searchWords: ['hello', 'message'],
preferredVisualisationType: 'logs',
});
const fields = logResults.fields.map((f) => {
return {
name: f.name,
type: f.type,
};
});
expect(fields).toContainEqual({ name: '@timestamp', type: 'time' });
expect(fields).toContainEqual({ name: 'host', type: 'string' });
expect(fields).toContainEqual({ name: 'message', type: 'string' });
let rows = new DataFrameView(logResults);
for (let i = 0; i < rows.length; i++) {
const r = rows.get(i);
expect(r._id).toEqual(response.responses[0].hits.hits[i]._id);
expect(r._type).toEqual(response.responses[0].hits.hits[i]._type);
expect(r._index).toEqual(response.responses[0].hits.hits[i]._index);
expect(r._source).toEqual(flatten(response.responses[0].hits.hits[i]._source));
}
// Make a map from the histogram results
const hist: KeyValue<number> = {};
const histogramResults = new MutableDataFrame(result.data[1]);
rows = new DataFrameView(histogramResults);
for (let i = 0; i < rows.length; i++) {
const row = rows.get(i);
hist[row.Time] = row.Value;
}
response.responses[0].aggregations['2'].buckets.forEach((bucket) => {
expect(hist[bucket.key]).toEqual(bucket.doc_count);
});
});
it('should map levels field', () => {
const result = new ElasticResponse(targets, response).getLogs(undefined, 'level');
const fieldCache = new FieldCache(result.data[0]);
const field = fieldCache.getFieldByName('level');
expect(field?.values).toEqual(['debug', 'error']);
});
it('should re map levels field to new field', () => {
const result = new ElasticResponse(targets, response).getLogs(undefined, 'fields.lvl');
const fieldCache = new FieldCache(result.data[0]);
const field = fieldCache.getFieldByName('level');
expect(field?.values).toEqual(['debug', 'info']);
});
it('should correctly guess field types', () => {
const result = new ElasticResponse(targets, response).getLogs();
const logResults = result.data[0] as MutableDataFrame;
const fields = logResults.fields.map((f) => {
return {
name: f.name,
type: f.type,
};
});
expect(fields).toContainEqual({ name: '@timestamp', type: 'time' });
expect(fields).toContainEqual({ name: 'number', type: 'number' });
expect(fields).toContainEqual({ name: 'message', type: 'string' });
});
});
describe('logs query with empty response', () => {
const targets: ElasticsearchQuery[] = [
{
refId: 'A',
metrics: [{ type: 'logs', id: '2' }],
bucketAggs: [{ type: 'date_histogram', settings: { interval: 'auto' }, id: '1' }],
key: 'Q-1561369883389-0.7611823271062786-0',
query: 'hello AND message',
timeField: '@timestamp',
},
];
const response = {
responses: [
{
hits: { hits: [] },
aggregations: {
'1': {
buckets: [
{ key_as_string: '1633676760000', key: 1633676760000, doc_count: 0 },
{ key_as_string: '1633676770000', key: 1633676770000, doc_count: 0 },
{ key_as_string: '1633676780000', key: 1633676780000, doc_count: 0 },
],
},
},
status: 200,
},
],
};
it('should return histogram aggregation and documents', () => {
const result = new ElasticResponse(targets, response).getLogs('message', 'level');
expect(result.data.length).toBe(2);
});
});
});
interface MockedElasticResponse {
aggregations?: {
[key: string]: {
buckets: Array<{
doc_count?: number;
key: string | number;
[key: string]: unknown;
}>;
};
};
hits?: {
total: number;
hits: Array<{
_id?: string;
_type?: string;
_index?: string;
_source: { sourceProp: string };
fields: { fieldProp: string };
}>;
};
}
interface MockedQueryData {
target: ElasticsearchQuery;
response: MockedElasticResponse;
}