Previously, it could result when left-shifting signed integer due to implicit
integer promotion, such that the most significant bit appeared on the sign bit.
In practice, though, this results in the same left value as with an explicit
cast, at least on known compilers, such as GCC and Clang. The reason is that
in_addr_t, which is equivalent to uint32_t and same as "unsigned int" in ILP32
and LP64 data type models, has the same type width as the intermediate after
integer promotion, so there's no side effects such as sign-extension. This
explains why adding an explicit cast does not change object files in practice.
Found with UndefinedBehaviorSanitizer (shift).
Based on a patch by Piotr Sikora.
While copying ngx_http_variable_value_t structures to geo binary base
in ngx_http_geo_copy_values(), and similarly in the stream module,
uninitialized parts of these structures are copied as well. These
include the "escape" field and possible holes. Calculating crc32 of
this data triggers uninitialized memory access.
Found with MemorySanitizer.
Signed-off-by: Piotr Sikora <piotr@aviatrix.com>
In preparation for adding more parameters to the listen directive,
and to be in sync with the corresponding structure in the http module.
No functional changes.
Originally, the stream module was developed based on the mail module,
following the existing style. Then it was diverged to closely follow
the http module development. This change updates style to use sscf
naming convention troughout the stream module, which matches the http
module code style. No functional changes.
The module allows to pass connections from Stream to other modules such as HTTP
or Mail, as well as back to Stream. Previously, this was only possible with
proxying. Connections with preread buffer read out from socket cannot be
passed.
The module allows selective SSL termination based on SNI.
stream {
server {
listen 8000 default_server;
ssl_preread on;
...
}
server {
listen 8000;
server_name foo.example.com;
pass 127.0.0.1:8001; # to HTTP
}
server {
listen 8000;
server_name bar.example.com;
...
}
}
http {
server {
listen 8001 ssl;
...
location / {
root html;
}
}
}
Server name is taken either from ngx_stream_ssl_module or
ngx_stream_ssl_preread_module.
The change adds "default_server" parameter to the "listen" directive,
as well as the following directives: "server_names_hash_max_size",
"server_names_hash_bucket_size", "server_name" and "ssl_reject_handshake".
Previously, preread buffer was always read out from socket, which made it
impossible to terminate SSL on the connection without introducing additional
SSL BIOs. The following patches will rely on this.
Now, when possible, recv(MSG_PEEK) is used instead, which keeps data in socket.
It's called if SSL is not already terminated and if an egde-triggered event
method is used. For epoll, EPOLLRDHUP support is also required.
Stream connection cleanup handler ngx_quic_stream_cleanup_handler() calls
ngx_quic_shutdown_stream() after which it resets the pointer from quic stream
to the connection (sc->connection = NULL). Previously if this call failed,
sc->connection retained the old value, while the connection was freed by the
application code. This resulted later in a second attempt to close the freed
connection, which lead to allocator double free error.
The fix is to reset the sc->connection pointer in case of error.
Inspired by RFC 9001, Section 6.3, trial packet decryption with the current
keys is now used to avoid a timing side-channel signal. Further, this fixes
segfault while accessing missing next keys (ticket #2585).
Previously if an MTU probe send failed early in ngx_quic_frame_sendto()
due to allocation error or congestion control, the application level packet
number was not increased, but was still saved as MTU probe packet number.
Later when a packet with this number was acknowledged, the unsent MTU probe
was acknowledged as well. This could result in discovering a bigger MTU than
supported by the path, which could lead to EMSGSIZE (Message too long) errors
while sending further packets.
The problem existed since PMTUD was introduced in 58afcd72446f (1.25.2).
Back then only the unlikely memory allocation error could trigger it. However
in efcdaa66df2e congestion control was added to ngx_quic_frame_sendto() which
can now trigger the issue with a higher probability.
Now "fastopen", "backlog", "accept_filter", "deferred", and "so_keepalive"
parameters are not allowed with "quic" in the "listen" directive.
Reported by Izorkin.
When filter finalization is triggered when working with an upstream server,
and error_page redirects request processing to some simple handler,
ngx_http_request_finalize() triggers request termination when the response
is sent. In particular, via the upstream cleanup handler, nginx will close
the upstream connection and the corresponding socket.
Still, this can happen to be with ngx_event_pipe() on stack. While
the code will set p->downstream_error due to NGX_ERROR returned from the
output filter chain by filter finalization, otherwise the error will be
ignored till control returns to ngx_http_upstream_process_request().
And event pipe might try reading from the (already closed) socket, resulting
in "readv() failed (9: Bad file descriptor) while reading upstream" errors
(or even segfaults with SSL).
Such errors were seen with the following configuration:
location /t2 {
proxy_pass http://127.0.0.1:8080/big;
image_filter_buffer 10m;
image_filter resize 150 100;
error_page 415 = /empty;
}
location /empty {
return 204;
}
location /big {
# big enough static file
}
Fix is to clear p->upstream in ngx_http_upstream_finalize_request(),
and ensure that p->upstream is checked in ngx_event_pipe_read_upstream()
and when handling events at ngx_event_pipe() exit.
When a request was terminated due to an error via ngx_http_terminate_request()
while an AIO operation was running in a subrequest, various issues were
observed. This happened because ngx_http_request_finalizer() was only set
in the subrequest where ngx_http_terminate_request() was called, but not
in the subrequest where the AIO operation was running. After completion
of the AIO operation normal processing of the subrequest was resumed, leading
to issues.
In particular, in case of the upstream module, termination of the request
called upstream cleanup, which closed the upstream connection. Attempts to
further work with the upstream connection after AIO operation completion
resulted in segfaults in ngx_ssl_recv(), "readv() failed (9: Bad file
descriptor) while reading upstream" errors, or socket leaks.
In ticket #2555, issues were observed with the following configuration
with cache background update (with thread writing instrumented to
introduce a delay, when a client closes the connection during an update):
location = /background-and-aio-write {
proxy_pass ...
proxy_cache one;
proxy_cache_valid 200 1s;
proxy_cache_background_update on;
proxy_cache_use_stale updating;
aio threads;
aio_write on;
limit_rate 1000;
}
Similarly, the same issue can be seen with SSI, and can be caused by
errors in subrequests, such as in the following configuration
(where "/proxy" uses AIO, and "/sleep" returns 444 after some delay,
causing request termination):
location = /ssi-active-boom {
ssi on;
ssi_types *;
return 200 '
<!--#include virtual="/proxy" -->
<!--#include virtual="/sleep" -->
';
limit_rate 1000;
}
Or the same with both AIO operation and the error in non-active subrequests
(which needs slightly different handling, see below):
location = /ssi-non-active-boom {
ssi on;
ssi_types *;
return 200 '
<!--#include virtual="/static" -->
<!--#include virtual="/proxy" -->
<!--#include virtual="/sleep" -->
';
limit_rate 1000;
}
Similarly, issues can be observed with just static files. However,
with static files potential impact is limited due to timeout safeguards
in ngx_http_writer(), and the fact that c->error is set during request
termination.
In a simple configuration with an AIO operation in the active subrequest,
such as in the following configuration, the connection is closed right
after completion of the AIO operation anyway, since ngx_http_writer()
tries to write to the connection and fails due to c->error set:
location = /ssi-active-static-boom {
ssi on;
ssi_types *;
return 200 '
<!--#include virtual="/static-aio" -->
<!--#include virtual="/sleep" -->
';
limit_rate 1000;
}
In the following configuration, with an AIO operation in a non-active
subrequest, the connection is closed only after send_timeout expires:
location = /ssi-non-active-static-boom {
ssi on;
ssi_types *;
return 200 '
<!--#include virtual="/static" -->
<!--#include virtual="/static-aio" -->
<!--#include virtual="/sleep" -->
';
limit_rate 1000;
}
Fix is to introduce r->main->terminated flag, which is to be checked
by AIO event handlers when the r->main->blocked counter is decremented.
When the flag is set, handlers are expected to wake up the connection
instead of the subrequest (which might be already cleaned up).
Additionally, now ngx_http_request_finalizer() is always set in the
active subrequest, so waking up the connection properly finalizes the
request even if termination happened in a non-active subrequest.
Each AIO (thread IO) operation being run is now accompanied with 1-minute
timer. This timer prevents unexpected shutdown of the worker process while
an AIO operation is running, and logs an alert if the operation is running
for too long.
This fixes "open socket left" alerts during worker processes shutdown
due to pending AIO (or thread IO) operations while corresponding requests
have no timers. In particular, such errors were observed while reading
cache headers (ticket #2162), and with worker_shutdown_timeout.
When graceful shutdown was requested, and then nginx was forced to
do fast shutdown, it used to (incorrectly) complain about open sockets
left in connections which weren't yet closed when fast shutdown
was requested.
Fix is to avoid complaining about open sockets when fast shutdown was
requested after graceful one. Abnormal termination, if requested with
the WINCH signal, can still happen though.
OPENSSL_VERSION_NUMBER is now redefined to 0x1010000fL for LibreSSL 3.5.0
and above. Building with older LibreSSL versions, such as 2.8.0, may now
produce warnings (see cab37803ebb3) and may require appropriate compiler
options to suppress them.
Notably, this allows to start using SSL_get0_verified_chain() appeared
in OpenSSL 1.1.0 and LibreSSL 3.5.0, without additional macro tests.
Prodded by Ilya Shipitsin.
Similar to 7356:e3ba4026c02d, as long as SSL_OP_NO_CLIENT_RENEGOTIATION
is defined, it is the library responsibility to prevent renegotiation.
Additionally, this allows to raise LibreSSL version used to redefine
OPENSSL_VERSION_NUMBER to 0x1010000fL, such that this won't result in
attempts to dereference SSL objects made opaque in LibreSSL 3.4.0.
Patch by Maxim Dounin.
rand() is used on win32. RAND_MAX is implementation defined. win32's is
0x7fff.
Existing uses of ngx_random() rely upon 0x7fffffff range provided by
POSIX implementations of random().
On-packet acknowledgement is made path aware, as per RFC 9000, Section 9.4:
Packets sent on the old path MUST NOT contribute to congestion control
or RTT estimation for the new path.
To make this possible in a single congestion control context, the first packet
to be sent after the new path has been validated, which includes resetting the
congestion controller and RTT estimator, is now remembered in the connection.
Packets sent previously, such as on the old path, are not taken into account.
Note that although the packet number is saved per-connection, the added checks
affect application level packets only. For non-application level packets,
which are only processed prior to the handshake is complete, the remembered
packet number remains set to zero.
As per RFC 9000, Section 8.2.1:
When an endpoint is unable to expand the datagram size to 1200 bytes due
to the anti-amplification limit, the path MTU will not be validated.
To ensure that the path MTU is large enough, the endpoint MUST perform a
second path validation by sending a PATH_CHALLENGE frame in a datagram of
at least 1200 bytes.
Previously ngx_quic_frame_sendto() ignored congestion control and did not
contribute to in_flight counter.
Now congestion control window is checked unless ignore_congestion flag is set.
Also, in_flight counter is incremented and the frame is stored in ctx->sent
queue if it's ack-eliciting. This behavior is now similar to
ngx_quic_output_packet().
According to RFC 9000, an endpoint SHOULD NOT send multiple PATH_CHALLENGE
frames in a single packet. The change adds a check to enforce this claim to
optimize server behavior. Previously each PATH_CHALLENGE always resulted in a
single response datagram being sent to client. The effect of this was however
limited by QUIC flood protection.
Also, PATH_CHALLENGE is explicitly disabled in Initial and Handshake levels,
see RFC 9000, Table 3. However, technically it may be sent by client in 0-RTT
over a new path without actual migration, even though the migration itself is
prohibited during handshake. This allows client to coalesce multiple 0-RTT
packets each carrying a PATH_CHALLENGE and end up with multiple PATH_CHALLENGEs
per datagram. This again leads to suboptimal behavior, see above. Since the
purpose of sending PATH_CHALLENGE frames in 0-RTT is unclear, these frames are
now only allowed in 1-RTT. For 0-RTT they are silently ignored.
Previously, when using ngx_quic_frame_sendto() to explicitly send a packet with
a single frame, anti-amplification limit was not properly enforced. Even when
there was no quota left for the packet, it was sent anyway, but with no padding.
Now the packet is not sent at all.
This function is called to send PATH_CHALLENGE/PATH_RESPONSE, PMTUD and probe
packets. For all these cases packet send is retried later in case the send was
not successful.
By default packets with these frames are expanded to 1200 bytes. Previously,
if anti-amplification limit did not allow this expansion, it was limited to
whatever size was allowed. However RFC 9000 clearly states no partial
expansion should happen in both cases.
Section 8.2.1. Initiating Path Validation:
An endpoint MUST expand datagrams that contain a PATH_CHALLENGE frame
to at least the smallest allowed maximum datagram size of 1200 bytes,
unless the anti-amplification limit for the path does not permit
sending a datagram of this size.
Section 8.2.2. Path Validation Responses:
An endpoint MUST expand datagrams that contain a PATH_RESPONSE frame
to at least the smallest allowed maximum datagram size of 1200 bytes.
...
However, an endpoint MUST NOT expand the datagram containing the
PATH_RESPONSE if the resulting data exceeds the anti-amplification limit.
If URI is not fully parsed yet, some pointers are not set. As a result,
the calculation of "new + (ptr - old)" expression is flawed.
According to C11, 6.5.6 Additive operators, p.9:
: When two pointers are subtracted, both shall point to elements
: of the same array object, or one past the last element of the
: array object
Since "ptr" is not set, subtraction leads to undefined behaviour, because
"ptr" and "old" are not in the same buffer (i.e. array objects).
Prodded by GCC undefined behaviour sanitizer.
Neither r->port_start nor r->port_end were ever used.
The r->port_end is set by the parser, though it was never used by
the following code (and was never usable, since not copied by the
ngx_http_alloc_large_header_buffer() without r->port_start set).
Currently, packets generated by ngx_quic_frame_sendto() and
ngx_quic_send_early_cc() are not logged, thus making it hard
to read logs due to gaps appearing in packet numbers sequence.
At frames level, it is handy to see immediately packet number
in which they arrived or being sent.
As part of normal HTTP/2 processing, incomplete frames are saved in the
control state using a fixed size memcpy of NGX_HTTP_V2_STATE_BUFFER_SIZE.
For this matter, two state buffers are reserved in the HTTP/2 recv buffer.
As part of HTTP/2 auto-detection on plain TCP connections, initial data
is first read into a buffer specified by the client_header_buffer_size
directive that doesn't have state reservation. Previously, this made it
possible to over-read the buffer as part of saving the state.
The fix is to read the available buffer size rather than a fixed size.
Although memcpy of a fixed size can produce a better optimized code,
handling of incomplete frames isn't a common execution path, so it was
sacrificed for the sake of simplicity of the fix.