opentofu/internal/tofu/graph_builder_plan.go

358 lines
11 KiB
Go
Raw Normal View History

// Copyright (c) The OpenTofu Authors
// SPDX-License-Identifier: MPL-2.0
// Copyright (c) 2023 HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
2023-09-20 07:16:53 -05:00
package tofu
2016-11-05 18:26:12 -05:00
import (
"log"
"github.com/opentofu/opentofu/internal/addrs"
"github.com/opentofu/opentofu/internal/configs"
"github.com/opentofu/opentofu/internal/dag"
"github.com/opentofu/opentofu/internal/states"
"github.com/opentofu/opentofu/internal/tfdiags"
2016-11-05 18:26:12 -05:00
)
// PlanGraphBuilder is a GraphBuilder implementation that builds a graph for
// planning and for other "plan-like" operations which don't require an
// already-calculated plan as input.
2016-11-05 18:26:12 -05:00
//
// Unlike the apply graph builder, this graph builder:
2016-11-05 18:26:12 -05:00
//
// - Makes its decisions primarily based on the given configuration, which
// represents the desired state.
2016-11-05 18:26:12 -05:00
//
// - Ignores certain lifecycle concerns like create_before_destroy, because
// those are only important once we already know what action we're planning
// to take against a particular resource instance.
2016-11-05 18:26:12 -05:00
type PlanGraphBuilder struct {
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
// Config is the configuration tree to build a plan from.
Config *configs.Config
2016-11-05 18:26:12 -05:00
// State is the current state
State *states.State
2016-11-05 18:26:12 -05:00
core: Handle root and child module input variables consistently Previously we had a significant discrepancy between these two situations: we wrote the raw root module variables directly into the EvalContext and then applied type conversions only at expression evaluation time, while for child modules we converted and validated the values while visiting the variable graph node and wrote only the _final_ value into the EvalContext. This confusion seems to have been the root cause for #29899, where validation rules for root module variables were being applied at the wrong point in the process, prior to type conversion. To fix that bug and also make similar mistakes less likely in the future, I've made the root module variable handling more like the child module variable handling in the following ways: - The "raw value" (exactly as given by the user) lives only in the graph node representing the variable, which mirrors how the _expression_ for a child module variable lives in its graph node. This means that the flow for the two is the same except that there's no expression evaluation step for root module variables, because they arrive as constant values from the caller. - The set of variable values in the EvalContext is always only "final" values, after type conversion is complete. That in turn means we no longer need to do "just in time" conversion in evaluationStateData.GetInputVariable, and can just return the value exactly as stored, which is consistent with how we handle all other references between objects. This diff is noisier than I'd like because of how much it takes to wire a new argument (the raw variable values) through to the plan graph builder, but those changes are pretty mechanical and the interesting logic lives inside the plan graph builder itself, in NodeRootVariable, and the shared helper functions in eval_variable.go. While here I also took the opportunity to fix a historical API wart in EvalContext, where SetModuleCallArguments was built to take a set of variable values all at once but our current caller always calls with only one at a time. That is now just SetModuleCallArgument singular, to match with the new SetRootModuleArgument to deal with root module variables.
2021-11-10 19:29:45 -06:00
// RootVariableValues are the raw input values for root input variables
// given by the caller, which we'll resolve into final values as part
// of the plan walk.
RootVariableValues InputValues
// Plugins is a library of plug-in components (providers and
// provisioners) available for use.
Plugins *contextPlugins
// Targets are resources to target
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
Targets []addrs.Targetable
// Excludes are resources to exclude
Excludes []addrs.Targetable
// ForceReplace are resource instances where if we would normally have
// generated a NoOp or Update action then we'll force generating a replace
// action instead. Create and Delete actions are not affected.
ForceReplace []addrs.AbsResourceInstance
// skipRefresh indicates that we should skip refreshing managed resources
skipRefresh bool
// preDestroyRefresh indicates that we are executing the refresh which
// happens immediately before a destroy plan, which happens to use the
// normal planing mode so skipPlanChanges cannot be set.
preDestroyRefresh bool
// skipPlanChanges indicates that we should skip the step of comparing
// prior state with configuration and generating planned changes to
// resource instances. (This is for the "refresh only" planning mode,
// where we _only_ do the refresh step.)
skipPlanChanges bool
ConcreteProvider ConcreteProviderNodeFunc
ConcreteResource ConcreteResourceNodeFunc
ConcreteResourceInstance ConcreteResourceInstanceNodeFunc
ConcreteResourceOrphan ConcreteResourceInstanceNodeFunc
ConcreteResourceInstanceDeposed ConcreteResourceInstanceDeposedNodeFunc
ConcreteModule ConcreteModuleNodeFunc
// Plan Operation this graph will be used for.
Operation walkOperation
// ExternalReferences allows the external caller to pass in references to
// nodes that should not be pruned even if they are not referenced within
// the actual graph.
ExternalReferences []*addrs.Reference
// ImportTargets are the list of resources to import.
ImportTargets []*ImportTarget
// EndpointsToRemove are the list of resources and modules to forget from
// the state.
EndpointsToRemove []addrs.ConfigRemovable
// GenerateConfig tells OpenTofu where to write and generated config for
// any import targets that do not already have configuration.
//
// If empty, then config will not be generated.
GenerateConfigPath string
ProviderFunctionTracker ProviderFunctionMapping
2016-11-05 18:26:12 -05:00
}
// See GraphBuilder
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
func (b *PlanGraphBuilder) Build(path addrs.ModuleInstance) (*Graph, tfdiags.Diagnostics) {
log.Printf("[TRACE] building graph for %s", b.Operation)
2016-11-05 18:26:12 -05:00
return (&BasicGraphBuilder{
Steps: b.Steps(),
Name: "PlanGraphBuilder",
2016-11-05 18:26:12 -05:00
}).Build(path)
}
// See GraphBuilder
func (b *PlanGraphBuilder) Steps() []GraphTransformer {
switch b.Operation {
case walkPlan:
b.initPlan()
case walkPlanDestroy:
b.initDestroy()
case walkValidate:
b.initValidate()
case walkImport:
b.initImport()
default:
panic("invalid plan operation: " + b.Operation.String())
}
core: Be more explicit in how we handle create_before_destroy Previously our handling of create_before_destroy -- and of deposed objects in particular -- was rather "implicit" and spread over various different subsystems. We'd quietly just destroy every deposed object during a destroy operation, without any user-visible plan to do so. Here we make things more explicit by tracking each deposed object individually by its pseudorandomly-allocated key. There are two different mechanisms at play here, building on the same concepts: - During a replace operation with create_before_destroy, we *pre-allocate* a DeposedKey to use for the prior object in the "apply" node and then pass that exact id to the destroy node, ensuring that we only destroy the single object we planned to destroy. In the happy path here the user never actually sees the allocated deposed key because we use it and then immediately destroy it within the same operation. However, that destroy may fail, which brings us to the second mechanism: - If any deposed objects are already present in state during _plan_, we insert a destroy change for them into the plan so that it's explicit to the user that we are going to destroy these additional objects, and then create an individual graph node for each one in DiffTransformer. The main motivation here is to be more careful in how we handle these destroys so that from a user's standpoint we never destroy something without the user knowing about it ahead of time. However, this new organization also hopefully makes the code itself a little easier to follow because the connection between the create and destroy steps of a Replace is reprseented in a single place (in DiffTransformer) and deposed instances each have their own explicit graph node rather than being secretly handled as part of the main instance-level graph node.
2018-09-20 14:30:52 -05:00
2016-11-05 18:26:12 -05:00
steps := []GraphTransformer{
// Creates all the resources represented in the config
&ConfigTransformer{
2022-06-01 14:29:59 -05:00
Concrete: b.ConcreteResource,
Config: b.Config,
// Resources are not added from the config on destroy.
skip: b.Operation == walkPlanDestroy,
importTargets: b.ImportTargets,
// We only want to generate config during a plan operation.
generateConfigPathForImportTargets: b.GenerateConfigPath,
2016-11-05 18:26:12 -05:00
},
// Add dynamic values
&RootVariableTransformer{Config: b.Config, RawValues: b.RootVariableValues},
&ModuleVariableTransformer{Config: b.Config},
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
&LocalTransformer{Config: b.Config},
&OutputTransformer{
Config: b.Config,
RefreshOnly: b.skipPlanChanges || b.preDestroyRefresh,
Destroying: b.Operation == walkPlanDestroy,
// NOTE: We currently treat anything built with the plan graph
// builder as "planning" for our purposes here, because we share
// the same graph node implementation between all of the walk
// types and so the pre-planning walks still think they are
// producing a plan even though we immediately discard it.
Planning: true,
},
2016-11-05 18:26:12 -05:00
// Add nodes and edges for the check block assertions. Check block data
// sources were added earlier.
&checkTransformer{
Config: b.Config,
Operation: b.Operation,
},
2016-11-07 10:57:27 -06:00
// Add orphan resources
&OrphanResourceInstanceTransformer{
2022-06-01 14:29:59 -05:00
Concrete: b.ConcreteResourceOrphan,
State: b.State,
Config: b.Config,
skip: b.Operation == walkPlanDestroy,
2016-11-07 10:57:27 -06:00
},
core: Be more explicit in how we handle create_before_destroy Previously our handling of create_before_destroy -- and of deposed objects in particular -- was rather "implicit" and spread over various different subsystems. We'd quietly just destroy every deposed object during a destroy operation, without any user-visible plan to do so. Here we make things more explicit by tracking each deposed object individually by its pseudorandomly-allocated key. There are two different mechanisms at play here, building on the same concepts: - During a replace operation with create_before_destroy, we *pre-allocate* a DeposedKey to use for the prior object in the "apply" node and then pass that exact id to the destroy node, ensuring that we only destroy the single object we planned to destroy. In the happy path here the user never actually sees the allocated deposed key because we use it and then immediately destroy it within the same operation. However, that destroy may fail, which brings us to the second mechanism: - If any deposed objects are already present in state during _plan_, we insert a destroy change for them into the plan so that it's explicit to the user that we are going to destroy these additional objects, and then create an individual graph node for each one in DiffTransformer. The main motivation here is to be more careful in how we handle these destroys so that from a user's standpoint we never destroy something without the user knowing about it ahead of time. However, this new organization also hopefully makes the code itself a little easier to follow because the connection between the create and destroy steps of a Replace is reprseented in a single place (in DiffTransformer) and deposed instances each have their own explicit graph node rather than being secretly handled as part of the main instance-level graph node.
2018-09-20 14:30:52 -05:00
// We also need nodes for any deposed instance objects present in the
// state, so we can plan to destroy them. (During plan this will
2022-06-20 13:54:20 -05:00
// intentionally skip creating nodes for _current_ objects, since
// ConfigTransformer created nodes that will do that during
// DynamicExpand.)
core: Be more explicit in how we handle create_before_destroy Previously our handling of create_before_destroy -- and of deposed objects in particular -- was rather "implicit" and spread over various different subsystems. We'd quietly just destroy every deposed object during a destroy operation, without any user-visible plan to do so. Here we make things more explicit by tracking each deposed object individually by its pseudorandomly-allocated key. There are two different mechanisms at play here, building on the same concepts: - During a replace operation with create_before_destroy, we *pre-allocate* a DeposedKey to use for the prior object in the "apply" node and then pass that exact id to the destroy node, ensuring that we only destroy the single object we planned to destroy. In the happy path here the user never actually sees the allocated deposed key because we use it and then immediately destroy it within the same operation. However, that destroy may fail, which brings us to the second mechanism: - If any deposed objects are already present in state during _plan_, we insert a destroy change for them into the plan so that it's explicit to the user that we are going to destroy these additional objects, and then create an individual graph node for each one in DiffTransformer. The main motivation here is to be more careful in how we handle these destroys so that from a user's standpoint we never destroy something without the user knowing about it ahead of time. However, this new organization also hopefully makes the code itself a little easier to follow because the connection between the create and destroy steps of a Replace is reprseented in a single place (in DiffTransformer) and deposed instances each have their own explicit graph node rather than being secretly handled as part of the main instance-level graph node.
2018-09-20 14:30:52 -05:00
&StateTransformer{
ConcreteCurrent: b.ConcreteResourceInstance,
ConcreteDeposed: b.ConcreteResourceInstanceDeposed,
core: Be more explicit in how we handle create_before_destroy Previously our handling of create_before_destroy -- and of deposed objects in particular -- was rather "implicit" and spread over various different subsystems. We'd quietly just destroy every deposed object during a destroy operation, without any user-visible plan to do so. Here we make things more explicit by tracking each deposed object individually by its pseudorandomly-allocated key. There are two different mechanisms at play here, building on the same concepts: - During a replace operation with create_before_destroy, we *pre-allocate* a DeposedKey to use for the prior object in the "apply" node and then pass that exact id to the destroy node, ensuring that we only destroy the single object we planned to destroy. In the happy path here the user never actually sees the allocated deposed key because we use it and then immediately destroy it within the same operation. However, that destroy may fail, which brings us to the second mechanism: - If any deposed objects are already present in state during _plan_, we insert a destroy change for them into the plan so that it's explicit to the user that we are going to destroy these additional objects, and then create an individual graph node for each one in DiffTransformer. The main motivation here is to be more careful in how we handle these destroys so that from a user's standpoint we never destroy something without the user knowing about it ahead of time. However, this new organization also hopefully makes the code itself a little easier to follow because the connection between the create and destroy steps of a Replace is reprseented in a single place (in DiffTransformer) and deposed instances each have their own explicit graph node rather than being secretly handled as part of the main instance-level graph node.
2018-09-20 14:30:52 -05:00
State: b.State,
},
// Attach the state
&AttachStateTransformer{State: b.State},
// Create orphan output nodes
&OrphanOutputTransformer{
Config: b.Config,
State: b.State,
Planning: true,
},
2016-11-05 18:26:12 -05:00
// Attach the configuration to any resources
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
&AttachResourceConfigTransformer{Config: b.Config},
2016-11-05 18:26:12 -05:00
// add providers
transformProviders(b.ConcreteProvider, b.Config),
// Remove modules no longer present in the config
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
&RemovedModuleTransformer{Config: b.Config, State: b.State},
// Must attach schemas before ReferenceTransformer so that we can
// analyze the configuration to find references.
&AttachSchemaTransformer{Plugins: b.Plugins, Config: b.Config},
// After schema transformer, we can add function references
&ProviderFunctionTransformer{Config: b.Config, ProviderFunctionTracker: b.ProviderFunctionTracker},
// Remove unused providers and proxies
&PruneProviderTransformer{},
// Create expansion nodes for all of the module calls. This must
// come after all other transformers that create nodes representing
// objects that can belong to modules.
&ModuleExpansionTransformer{Concrete: b.ConcreteModule, Config: b.Config},
// Plug in any external references.
&ExternalReferenceTransformer{
ExternalReferences: b.ExternalReferences,
},
&ReferenceTransformer{},
&AttachDependenciesTransformer{},
// Make sure data sources are aware of any depends_on from the
// configuration
&attachDataResourceDependsOnTransformer{},
// DestroyEdgeTransformer is only required during a plan so that the
// TargetingTransformer can determine which nodes to keep in the graph.
&DestroyEdgeTransformer{
Operation: b.Operation,
},
&pruneUnusedNodesTransformer{
skip: b.Operation != walkPlanDestroy,
},
// Target
&TargetingTransformer{Targets: b.Targets, Excludes: b.Excludes},
// Detect when create_before_destroy must be forced on for a particular
// node due to dependency edges, to avoid graph cycles during apply.
&ForcedCBDTransformer{},
// Close opened plugin connections
&CloseProviderTransformer{},
// Close the root module
&CloseRootModuleTransformer{
RootConfig: b.Config,
},
2016-11-05 18:26:12 -05:00
// Perform the transitive reduction to make our graph a bit
2020-10-18 11:56:51 -05:00
// more understandable if possible (it usually is possible).
&TransitiveReductionTransformer{},
2016-11-05 18:26:12 -05:00
}
return steps
}
func (b *PlanGraphBuilder) initPlan() {
b.ConcreteProvider = func(a *NodeAbstractProvider) dag.Vertex {
return &NodeApplyableProvider{
NodeAbstractProvider: a,
}
}
b.ConcreteResource = func(a *NodeAbstractResource) dag.Vertex {
return &nodeExpandPlannableResource{
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
NodeAbstractResource: a,
skipRefresh: b.skipRefresh,
skipPlanChanges: b.skipPlanChanges,
preDestroyRefresh: b.preDestroyRefresh,
forceReplace: b.ForceReplace,
}
}
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
b.ConcreteResourceOrphan = func(a *NodeAbstractResourceInstance) dag.Vertex {
return &NodePlannableResourceInstanceOrphan{
NodeAbstractResourceInstance: a,
skipRefresh: b.skipRefresh,
skipPlanChanges: b.skipPlanChanges,
EndpointsToRemove: b.EndpointsToRemove,
}
}
b.ConcreteResourceInstanceDeposed = func(a *NodeAbstractResourceInstance, key states.DeposedKey) dag.Vertex {
return &NodePlanDeposedResourceInstanceObject{
NodeAbstractResourceInstance: a,
DeposedKey: key,
skipRefresh: b.skipRefresh,
skipPlanChanges: b.skipPlanChanges,
EndpointsToRemove: b.EndpointsToRemove,
}
}
}
func (b *PlanGraphBuilder) initDestroy() {
b.initPlan()
b.ConcreteResourceInstance = func(a *NodeAbstractResourceInstance) dag.Vertex {
return &NodePlanDestroyableResourceInstance{
NodeAbstractResourceInstance: a,
skipRefresh: b.skipRefresh,
}
}
}
func (b *PlanGraphBuilder) initValidate() {
// Set the provider to the normal provider. This will ask for input.
b.ConcreteProvider = func(a *NodeAbstractProvider) dag.Vertex {
return &NodeApplyableProvider{
NodeAbstractProvider: a,
}
}
b.ConcreteResource = func(a *NodeAbstractResource) dag.Vertex {
return &NodeValidatableResource{
NodeAbstractResource: a,
}
}
b.ConcreteModule = func(n *nodeExpandModule) dag.Vertex {
return &nodeValidateModule{
nodeExpandModule: *n,
}
}
}
func (b *PlanGraphBuilder) initImport() {
b.ConcreteProvider = func(a *NodeAbstractProvider) dag.Vertex {
return &NodeApplyableProvider{
NodeAbstractProvider: a,
}
}
b.ConcreteResource = func(a *NodeAbstractResource) dag.Vertex {
return &nodeExpandPlannableResource{
NodeAbstractResource: a,
// For now we always skip planning changes for import, since we are
// not going to combine importing with other changes. This is
// temporary to try and maintain existing import behaviors, but
// planning will need to be allowed for more complex configurations.
skipPlanChanges: true,
// We also skip refresh for now, since the plan output is written
// as the new state, and users are not expecting the import process
// to update any other instances in state.
skipRefresh: true,
}
}
}