opentofu/internal/tofu/context_input.go

210 lines
6.9 KiB
Go
Raw Normal View History

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
2023-09-20 07:16:53 -05:00
package tofu
import (
"context"
"log"
"sort"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hcldec"
"github.com/zclconf/go-cty/cty"
"github.com/opentofu/opentofu/internal/addrs"
"github.com/opentofu/opentofu/internal/configs"
"github.com/opentofu/opentofu/internal/tfdiags"
)
// Input asks for input to fill unset required arguments in provider
// configurations.
//
core: Functional-style API for terraform.Context Previously terraform.Context was built in an unfortunate way where all of the data was provided up front in terraform.NewContext and then mutated directly by subsequent operations. That made the data flow hard to follow, commonly leading to bugs, and also meant that we were forced to take various actions too early in terraform.NewContext, rather than waiting until a more appropriate time during an operation. This (enormous) commit changes terraform.Context so that its fields are broadly just unchanging data about the execution context (current workspace name, available plugins, etc) whereas the main data Terraform works with arrives via individual method arguments and is returned in return values. Specifically, this means that terraform.Context no longer "has-a" config, state, and "planned changes", instead holding on to those only temporarily during an operation. The caller is responsible for propagating the outcome of one step into the next step so that the data flow between operations is actually visible. However, since that's a change to the main entry points in the "terraform" package, this commit also touches every file in the codebase which interacted with those APIs. Most of the noise here is in updating tests to take the same actions using the new API style, but this also affects the main-code callers in the backends and in the command package. My goal here was to refactor without changing observable behavior, but in practice there are a couple externally-visible behavior variations here that seemed okay in service of the broader goal: - The "terraform graph" command is no longer hooked directly into the core graph builders, because that's no longer part of the public API. However, I did include a couple new Context functions whose contract is to produce a UI-oriented graph, and _for now_ those continue to return the physical graph we use for those operations. There's no exported API for generating the "validate" and "eval" graphs, because neither is particularly interesting in its own right, and so "terraform graph" no longer supports those graph types. - terraform.NewContext no longer has the responsibility for collecting all of the provider schemas up front. Instead, we wait until we need them. However, that means that some of our error messages now have a slightly different shape due to unwinding through a differently-shaped call stack. As of this commit we also end up reloading the schemas multiple times in some cases, which is functionally acceptable but likely represents a performance regression. I intend to rework this to use caching, but I'm saving that for a later commit because this one is big enough already. The proximal reason for this change is to resolve the chicken/egg problem whereby there was previously no single point where we could apply "moved" statements to the previous run state before creating a plan. With this change in place, we can now do that as part of Context.Plan, prior to forking the input state into the three separate state artifacts we use during planning. However, this is at least the third project in a row where the previous API design led to piling more functionality into terraform.NewContext and then working around the incorrect order of operations that produces, so I intend that by paying the cost/risk of this large diff now we can in turn reduce the cost/risk of future projects that relate to our main workflow actions.
2021-08-24 14:06:38 -05:00
// Unlike the other better-behaved operation methods, this one actually
// modifies some internal state inside the receving context so that the
// captured values will be implicitly available to a subsequent call to Plan,
// or to some other operation entry point. Hopefully a future iteration of
// this will change design to make that data flow more explicit.
//
// Because Input saves the results inside the Context object, asking for
// input twice on the same Context is invalid and will lead to undefined
// behavior.
//
// Once you've called Input with a particular config, it's invalid to call
// any other Context method with a different config, because the aforementioned
// modified internal state won't match. Again, this is an architectural wart
// that we'll hopefully resolve in future.
func (c *Context) Input(config *configs.Config, mode InputMode) tfdiags.Diagnostics {
// This function used to be responsible for more than it is now, so its
// interface is more general than its current functionality requires.
// It now exists only to handle interactive prompts for provider
// configurations, with other prompts the responsibility of the CLI
// layer prior to calling in to this package.
//
// (Hopefully in future the remaining functionality here can move to the
// CLI layer too in order to avoid this odd situation where core code
// produces UI input prompts.)
var diags tfdiags.Diagnostics
defer c.acquireRun("input")()
core: Functional-style API for terraform.Context Previously terraform.Context was built in an unfortunate way where all of the data was provided up front in terraform.NewContext and then mutated directly by subsequent operations. That made the data flow hard to follow, commonly leading to bugs, and also meant that we were forced to take various actions too early in terraform.NewContext, rather than waiting until a more appropriate time during an operation. This (enormous) commit changes terraform.Context so that its fields are broadly just unchanging data about the execution context (current workspace name, available plugins, etc) whereas the main data Terraform works with arrives via individual method arguments and is returned in return values. Specifically, this means that terraform.Context no longer "has-a" config, state, and "planned changes", instead holding on to those only temporarily during an operation. The caller is responsible for propagating the outcome of one step into the next step so that the data flow between operations is actually visible. However, since that's a change to the main entry points in the "terraform" package, this commit also touches every file in the codebase which interacted with those APIs. Most of the noise here is in updating tests to take the same actions using the new API style, but this also affects the main-code callers in the backends and in the command package. My goal here was to refactor without changing observable behavior, but in practice there are a couple externally-visible behavior variations here that seemed okay in service of the broader goal: - The "terraform graph" command is no longer hooked directly into the core graph builders, because that's no longer part of the public API. However, I did include a couple new Context functions whose contract is to produce a UI-oriented graph, and _for now_ those continue to return the physical graph we use for those operations. There's no exported API for generating the "validate" and "eval" graphs, because neither is particularly interesting in its own right, and so "terraform graph" no longer supports those graph types. - terraform.NewContext no longer has the responsibility for collecting all of the provider schemas up front. Instead, we wait until we need them. However, that means that some of our error messages now have a slightly different shape due to unwinding through a differently-shaped call stack. As of this commit we also end up reloading the schemas multiple times in some cases, which is functionally acceptable but likely represents a performance regression. I intend to rework this to use caching, but I'm saving that for a later commit because this one is big enough already. The proximal reason for this change is to resolve the chicken/egg problem whereby there was previously no single point where we could apply "moved" statements to the previous run state before creating a plan. With this change in place, we can now do that as part of Context.Plan, prior to forking the input state into the three separate state artifacts we use during planning. However, this is at least the third project in a row where the previous API design led to piling more functionality into terraform.NewContext and then working around the incorrect order of operations that produces, so I intend that by paying the cost/risk of this large diff now we can in turn reduce the cost/risk of future projects that relate to our main workflow actions.
2021-08-24 14:06:38 -05:00
schemas, moreDiags := c.Schemas(config, nil)
diags = diags.Append(moreDiags)
if moreDiags.HasErrors() {
return diags
}
if c.uiInput == nil {
log.Printf("[TRACE] Context.Input: uiInput is nil, so skipping")
return diags
}
ctx := context.Background()
if mode&InputModeProvider != 0 {
log.Printf("[TRACE] Context.Input: Prompting for provider arguments")
// We prompt for input only for provider configurations defined in
core: Functional-style API for terraform.Context Previously terraform.Context was built in an unfortunate way where all of the data was provided up front in terraform.NewContext and then mutated directly by subsequent operations. That made the data flow hard to follow, commonly leading to bugs, and also meant that we were forced to take various actions too early in terraform.NewContext, rather than waiting until a more appropriate time during an operation. This (enormous) commit changes terraform.Context so that its fields are broadly just unchanging data about the execution context (current workspace name, available plugins, etc) whereas the main data Terraform works with arrives via individual method arguments and is returned in return values. Specifically, this means that terraform.Context no longer "has-a" config, state, and "planned changes", instead holding on to those only temporarily during an operation. The caller is responsible for propagating the outcome of one step into the next step so that the data flow between operations is actually visible. However, since that's a change to the main entry points in the "terraform" package, this commit also touches every file in the codebase which interacted with those APIs. Most of the noise here is in updating tests to take the same actions using the new API style, but this also affects the main-code callers in the backends and in the command package. My goal here was to refactor without changing observable behavior, but in practice there are a couple externally-visible behavior variations here that seemed okay in service of the broader goal: - The "terraform graph" command is no longer hooked directly into the core graph builders, because that's no longer part of the public API. However, I did include a couple new Context functions whose contract is to produce a UI-oriented graph, and _for now_ those continue to return the physical graph we use for those operations. There's no exported API for generating the "validate" and "eval" graphs, because neither is particularly interesting in its own right, and so "terraform graph" no longer supports those graph types. - terraform.NewContext no longer has the responsibility for collecting all of the provider schemas up front. Instead, we wait until we need them. However, that means that some of our error messages now have a slightly different shape due to unwinding through a differently-shaped call stack. As of this commit we also end up reloading the schemas multiple times in some cases, which is functionally acceptable but likely represents a performance regression. I intend to rework this to use caching, but I'm saving that for a later commit because this one is big enough already. The proximal reason for this change is to resolve the chicken/egg problem whereby there was previously no single point where we could apply "moved" statements to the previous run state before creating a plan. With this change in place, we can now do that as part of Context.Plan, prior to forking the input state into the three separate state artifacts we use during planning. However, this is at least the third project in a row where the previous API design led to piling more functionality into terraform.NewContext and then working around the incorrect order of operations that produces, so I intend that by paying the cost/risk of this large diff now we can in turn reduce the cost/risk of future projects that relate to our main workflow actions.
2021-08-24 14:06:38 -05:00
// the root module. Provider configurations in other modules are a
// legacy thing we no longer recommend, and even if they weren't we
// can't practically prompt for their inputs here because we've not
// yet done "expansion" and so we don't know whether the modules are
// using count or for_each.
pcs := make(map[string]*configs.Provider)
Initial steps towards AbsProviderConfig/LocalProviderConfig separation (#23978) * Introduce "Local" terminology for non-absolute provider config addresses In a future change AbsProviderConfig and LocalProviderConfig are going to become two entirely distinct types, rather than Abs embedding Local as written here. This naming change is in preparation for that subsequent work, which will also include introducing a new "ProviderConfig" type that is an interface that AbsProviderConfig and LocalProviderConfig both implement. This is intended to be largely just a naming change to get started, so we can deal with all of the messy renaming. However, this did also require a slight change in modeling where the Resource.DefaultProviderConfig method has become Resource.DefaultProvider returning a Provider address directly, because this method doesn't have enough information to construct a true and accurate LocalProviderConfig -- it would need to refer to the configuration to know what this module is calling the provider it has selected. In order to leave a trail to follow for subsequent work, all of the changes here are intended to ensure that remaining work will become obvious via compile-time errors when all of the following changes happen: - The concept of "legacy" provider addresses is removed from the addrs package, including removing addrs.NewLegacyProvider and addrs.Provider.LegacyString. - addrs.AbsProviderConfig stops having addrs.LocalProviderConfig embedded in it and has an addrs.Provider and a string alias directly instead. - The provider-schema-handling parts of Terraform core are updated to work with addrs.Provider to identify providers, rather than legacy strings. In particular, there are still several codepaths here making legacy provider address assumptions (in order to limit the scope of this change) but I've made sure each one is doing something that relies on at least one of the above changes not having been made yet. * addrs: ProviderConfig interface In a (very) few special situations in the main "terraform" package we need to make runtime decisions about whether a provider config is absolute or local. We currently do that by exploiting the fact that AbsProviderConfig has LocalProviderConfig nested inside of it and so in the local case we can just ignore the wrapping AbsProviderConfig and use the embedded value. In a future change we'll be moving away from that embedding and making these two types distinct in order to represent that mapping between them requires consulting a lookup table in the configuration, and so here we introduce a new interface type ProviderConfig that can represent either AbsProviderConfig or LocalProviderConfig decided dynamically at runtime. This also includes the Config.ResolveAbsProviderAddr method that will eventually be responsible for that local-to-absolute translation, so that callers with access to the configuration can normalize to an addrs.AbsProviderConfig given a non-nil addrs.ProviderConfig. That's currently unused because existing callers are still relying on the simplistic structural transform, but we'll switch them over in a later commit. * rename LocalType to LocalName Co-authored-by: Kristin Laemmert <mildwonkey@users.noreply.github.com>
2020-01-31 07:23:07 -06:00
pas := make(map[string]addrs.LocalProviderConfig)
core: Functional-style API for terraform.Context Previously terraform.Context was built in an unfortunate way where all of the data was provided up front in terraform.NewContext and then mutated directly by subsequent operations. That made the data flow hard to follow, commonly leading to bugs, and also meant that we were forced to take various actions too early in terraform.NewContext, rather than waiting until a more appropriate time during an operation. This (enormous) commit changes terraform.Context so that its fields are broadly just unchanging data about the execution context (current workspace name, available plugins, etc) whereas the main data Terraform works with arrives via individual method arguments and is returned in return values. Specifically, this means that terraform.Context no longer "has-a" config, state, and "planned changes", instead holding on to those only temporarily during an operation. The caller is responsible for propagating the outcome of one step into the next step so that the data flow between operations is actually visible. However, since that's a change to the main entry points in the "terraform" package, this commit also touches every file in the codebase which interacted with those APIs. Most of the noise here is in updating tests to take the same actions using the new API style, but this also affects the main-code callers in the backends and in the command package. My goal here was to refactor without changing observable behavior, but in practice there are a couple externally-visible behavior variations here that seemed okay in service of the broader goal: - The "terraform graph" command is no longer hooked directly into the core graph builders, because that's no longer part of the public API. However, I did include a couple new Context functions whose contract is to produce a UI-oriented graph, and _for now_ those continue to return the physical graph we use for those operations. There's no exported API for generating the "validate" and "eval" graphs, because neither is particularly interesting in its own right, and so "terraform graph" no longer supports those graph types. - terraform.NewContext no longer has the responsibility for collecting all of the provider schemas up front. Instead, we wait until we need them. However, that means that some of our error messages now have a slightly different shape due to unwinding through a differently-shaped call stack. As of this commit we also end up reloading the schemas multiple times in some cases, which is functionally acceptable but likely represents a performance regression. I intend to rework this to use caching, but I'm saving that for a later commit because this one is big enough already. The proximal reason for this change is to resolve the chicken/egg problem whereby there was previously no single point where we could apply "moved" statements to the previous run state before creating a plan. With this change in place, we can now do that as part of Context.Plan, prior to forking the input state into the three separate state artifacts we use during planning. However, this is at least the third project in a row where the previous API design led to piling more functionality into terraform.NewContext and then working around the incorrect order of operations that produces, so I intend that by paying the cost/risk of this large diff now we can in turn reduce the cost/risk of future projects that relate to our main workflow actions.
2021-08-24 14:06:38 -05:00
for _, pc := range config.Module.ProviderConfigs {
addr := pc.Addr()
pcs[addr.String()] = pc
pas[addr.String()] = addr
log.Printf("[TRACE] Context.Input: Provider %s declared at %s", addr, pc.DeclRange)
}
// We also need to detect _implied_ provider configs from resources.
// These won't have *configs.Provider objects, but they will still
// exist in the map and we'll just treat them as empty below.
core: Functional-style API for terraform.Context Previously terraform.Context was built in an unfortunate way where all of the data was provided up front in terraform.NewContext and then mutated directly by subsequent operations. That made the data flow hard to follow, commonly leading to bugs, and also meant that we were forced to take various actions too early in terraform.NewContext, rather than waiting until a more appropriate time during an operation. This (enormous) commit changes terraform.Context so that its fields are broadly just unchanging data about the execution context (current workspace name, available plugins, etc) whereas the main data Terraform works with arrives via individual method arguments and is returned in return values. Specifically, this means that terraform.Context no longer "has-a" config, state, and "planned changes", instead holding on to those only temporarily during an operation. The caller is responsible for propagating the outcome of one step into the next step so that the data flow between operations is actually visible. However, since that's a change to the main entry points in the "terraform" package, this commit also touches every file in the codebase which interacted with those APIs. Most of the noise here is in updating tests to take the same actions using the new API style, but this also affects the main-code callers in the backends and in the command package. My goal here was to refactor without changing observable behavior, but in practice there are a couple externally-visible behavior variations here that seemed okay in service of the broader goal: - The "terraform graph" command is no longer hooked directly into the core graph builders, because that's no longer part of the public API. However, I did include a couple new Context functions whose contract is to produce a UI-oriented graph, and _for now_ those continue to return the physical graph we use for those operations. There's no exported API for generating the "validate" and "eval" graphs, because neither is particularly interesting in its own right, and so "terraform graph" no longer supports those graph types. - terraform.NewContext no longer has the responsibility for collecting all of the provider schemas up front. Instead, we wait until we need them. However, that means that some of our error messages now have a slightly different shape due to unwinding through a differently-shaped call stack. As of this commit we also end up reloading the schemas multiple times in some cases, which is functionally acceptable but likely represents a performance regression. I intend to rework this to use caching, but I'm saving that for a later commit because this one is big enough already. The proximal reason for this change is to resolve the chicken/egg problem whereby there was previously no single point where we could apply "moved" statements to the previous run state before creating a plan. With this change in place, we can now do that as part of Context.Plan, prior to forking the input state into the three separate state artifacts we use during planning. However, this is at least the third project in a row where the previous API design led to piling more functionality into terraform.NewContext and then working around the incorrect order of operations that produces, so I intend that by paying the cost/risk of this large diff now we can in turn reduce the cost/risk of future projects that relate to our main workflow actions.
2021-08-24 14:06:38 -05:00
for _, rc := range config.Module.ManagedResources {
pa := rc.ProviderConfigAddr()
if pa.Alias != "" {
continue // alias configurations cannot be implied
}
if _, exists := pcs[pa.String()]; !exists {
pcs[pa.String()] = nil
pas[pa.String()] = pa
log.Printf("[TRACE] Context.Input: Provider %s implied by resource block at %s", pa, rc.DeclRange)
}
}
core: Functional-style API for terraform.Context Previously terraform.Context was built in an unfortunate way where all of the data was provided up front in terraform.NewContext and then mutated directly by subsequent operations. That made the data flow hard to follow, commonly leading to bugs, and also meant that we were forced to take various actions too early in terraform.NewContext, rather than waiting until a more appropriate time during an operation. This (enormous) commit changes terraform.Context so that its fields are broadly just unchanging data about the execution context (current workspace name, available plugins, etc) whereas the main data Terraform works with arrives via individual method arguments and is returned in return values. Specifically, this means that terraform.Context no longer "has-a" config, state, and "planned changes", instead holding on to those only temporarily during an operation. The caller is responsible for propagating the outcome of one step into the next step so that the data flow between operations is actually visible. However, since that's a change to the main entry points in the "terraform" package, this commit also touches every file in the codebase which interacted with those APIs. Most of the noise here is in updating tests to take the same actions using the new API style, but this also affects the main-code callers in the backends and in the command package. My goal here was to refactor without changing observable behavior, but in practice there are a couple externally-visible behavior variations here that seemed okay in service of the broader goal: - The "terraform graph" command is no longer hooked directly into the core graph builders, because that's no longer part of the public API. However, I did include a couple new Context functions whose contract is to produce a UI-oriented graph, and _for now_ those continue to return the physical graph we use for those operations. There's no exported API for generating the "validate" and "eval" graphs, because neither is particularly interesting in its own right, and so "terraform graph" no longer supports those graph types. - terraform.NewContext no longer has the responsibility for collecting all of the provider schemas up front. Instead, we wait until we need them. However, that means that some of our error messages now have a slightly different shape due to unwinding through a differently-shaped call stack. As of this commit we also end up reloading the schemas multiple times in some cases, which is functionally acceptable but likely represents a performance regression. I intend to rework this to use caching, but I'm saving that for a later commit because this one is big enough already. The proximal reason for this change is to resolve the chicken/egg problem whereby there was previously no single point where we could apply "moved" statements to the previous run state before creating a plan. With this change in place, we can now do that as part of Context.Plan, prior to forking the input state into the three separate state artifacts we use during planning. However, this is at least the third project in a row where the previous API design led to piling more functionality into terraform.NewContext and then working around the incorrect order of operations that produces, so I intend that by paying the cost/risk of this large diff now we can in turn reduce the cost/risk of future projects that relate to our main workflow actions.
2021-08-24 14:06:38 -05:00
for _, rc := range config.Module.DataResources {
pa := rc.ProviderConfigAddr()
if pa.Alias != "" {
continue // alias configurations cannot be implied
}
if _, exists := pcs[pa.String()]; !exists {
pcs[pa.String()] = nil
pas[pa.String()] = pa
log.Printf("[TRACE] Context.Input: Provider %s implied by data block at %s", pa, rc.DeclRange)
}
}
for pk, pa := range pas {
pc := pcs[pk] // will be nil if this is an implied config
// Wrap the input into a namespace
input := &PrefixUIInput{
IdPrefix: pk,
QueryPrefix: pk + ".",
UIInput: c.uiInput,
}
core: Functional-style API for terraform.Context Previously terraform.Context was built in an unfortunate way where all of the data was provided up front in terraform.NewContext and then mutated directly by subsequent operations. That made the data flow hard to follow, commonly leading to bugs, and also meant that we were forced to take various actions too early in terraform.NewContext, rather than waiting until a more appropriate time during an operation. This (enormous) commit changes terraform.Context so that its fields are broadly just unchanging data about the execution context (current workspace name, available plugins, etc) whereas the main data Terraform works with arrives via individual method arguments and is returned in return values. Specifically, this means that terraform.Context no longer "has-a" config, state, and "planned changes", instead holding on to those only temporarily during an operation. The caller is responsible for propagating the outcome of one step into the next step so that the data flow between operations is actually visible. However, since that's a change to the main entry points in the "terraform" package, this commit also touches every file in the codebase which interacted with those APIs. Most of the noise here is in updating tests to take the same actions using the new API style, but this also affects the main-code callers in the backends and in the command package. My goal here was to refactor without changing observable behavior, but in practice there are a couple externally-visible behavior variations here that seemed okay in service of the broader goal: - The "terraform graph" command is no longer hooked directly into the core graph builders, because that's no longer part of the public API. However, I did include a couple new Context functions whose contract is to produce a UI-oriented graph, and _for now_ those continue to return the physical graph we use for those operations. There's no exported API for generating the "validate" and "eval" graphs, because neither is particularly interesting in its own right, and so "terraform graph" no longer supports those graph types. - terraform.NewContext no longer has the responsibility for collecting all of the provider schemas up front. Instead, we wait until we need them. However, that means that some of our error messages now have a slightly different shape due to unwinding through a differently-shaped call stack. As of this commit we also end up reloading the schemas multiple times in some cases, which is functionally acceptable but likely represents a performance regression. I intend to rework this to use caching, but I'm saving that for a later commit because this one is big enough already. The proximal reason for this change is to resolve the chicken/egg problem whereby there was previously no single point where we could apply "moved" statements to the previous run state before creating a plan. With this change in place, we can now do that as part of Context.Plan, prior to forking the input state into the three separate state artifacts we use during planning. However, this is at least the third project in a row where the previous API design led to piling more functionality into terraform.NewContext and then working around the incorrect order of operations that produces, so I intend that by paying the cost/risk of this large diff now we can in turn reduce the cost/risk of future projects that relate to our main workflow actions.
2021-08-24 14:06:38 -05:00
providerFqn := config.Module.ProviderForLocalConfig(pa)
schema := schemas.ProviderConfig(providerFqn)
if schema == nil {
// Could either be an incorrect config or just an incomplete
// mock in tests. We'll let a later pass decide, and just
// ignore this for the purposes of gathering input.
Initial steps towards AbsProviderConfig/LocalProviderConfig separation (#23978) * Introduce "Local" terminology for non-absolute provider config addresses In a future change AbsProviderConfig and LocalProviderConfig are going to become two entirely distinct types, rather than Abs embedding Local as written here. This naming change is in preparation for that subsequent work, which will also include introducing a new "ProviderConfig" type that is an interface that AbsProviderConfig and LocalProviderConfig both implement. This is intended to be largely just a naming change to get started, so we can deal with all of the messy renaming. However, this did also require a slight change in modeling where the Resource.DefaultProviderConfig method has become Resource.DefaultProvider returning a Provider address directly, because this method doesn't have enough information to construct a true and accurate LocalProviderConfig -- it would need to refer to the configuration to know what this module is calling the provider it has selected. In order to leave a trail to follow for subsequent work, all of the changes here are intended to ensure that remaining work will become obvious via compile-time errors when all of the following changes happen: - The concept of "legacy" provider addresses is removed from the addrs package, including removing addrs.NewLegacyProvider and addrs.Provider.LegacyString. - addrs.AbsProviderConfig stops having addrs.LocalProviderConfig embedded in it and has an addrs.Provider and a string alias directly instead. - The provider-schema-handling parts of Terraform core are updated to work with addrs.Provider to identify providers, rather than legacy strings. In particular, there are still several codepaths here making legacy provider address assumptions (in order to limit the scope of this change) but I've made sure each one is doing something that relies on at least one of the above changes not having been made yet. * addrs: ProviderConfig interface In a (very) few special situations in the main "terraform" package we need to make runtime decisions about whether a provider config is absolute or local. We currently do that by exploiting the fact that AbsProviderConfig has LocalProviderConfig nested inside of it and so in the local case we can just ignore the wrapping AbsProviderConfig and use the embedded value. In a future change we'll be moving away from that embedding and making these two types distinct in order to represent that mapping between them requires consulting a lookup table in the configuration, and so here we introduce a new interface type ProviderConfig that can represent either AbsProviderConfig or LocalProviderConfig decided dynamically at runtime. This also includes the Config.ResolveAbsProviderAddr method that will eventually be responsible for that local-to-absolute translation, so that callers with access to the configuration can normalize to an addrs.AbsProviderConfig given a non-nil addrs.ProviderConfig. That's currently unused because existing callers are still relying on the simplistic structural transform, but we'll switch them over in a later commit. * rename LocalType to LocalName Co-authored-by: Kristin Laemmert <mildwonkey@users.noreply.github.com>
2020-01-31 07:23:07 -06:00
log.Printf("[TRACE] Context.Input: No schema available for provider type %q", pa.LocalName)
continue
}
// For our purposes here we just want to detect if attrbutes are
// set in config at all, so rather than doing a full decode
// (which would require us to prepare an evalcontext, etc) we'll
// use the low-level HCL API to process only the top-level
// structure.
var attrExprs hcl.Attributes // nil if there is no config
if pc != nil && pc.Config != nil {
lowLevelSchema := schemaForInputSniffing(hcldec.ImpliedSchema(schema.DecoderSpec()))
content, _, diags := pc.Config.PartialContent(lowLevelSchema)
if diags.HasErrors() {
log.Printf("[TRACE] Context.Input: %s has decode error, so ignoring: %s", pa, diags.Error())
continue
}
attrExprs = content.Attributes
}
keys := make([]string, 0, len(schema.Attributes))
for key := range schema.Attributes {
keys = append(keys, key)
}
sort.Strings(keys)
vals := map[string]cty.Value{}
for _, key := range keys {
attrS := schema.Attributes[key]
if attrS.Optional {
continue
}
if attrExprs != nil {
if _, exists := attrExprs[key]; exists {
continue
}
}
if !attrS.Type.Equals(cty.String) {
continue
}
log.Printf("[TRACE] Context.Input: Prompting for %s argument %s", pa, key)
rawVal, err := input.Input(ctx, &InputOpts{
Id: key,
Query: key,
Description: attrS.Description,
})
if err != nil {
log.Printf("[TRACE] Context.Input: Failed to prompt for %s argument %s: %s", pa, key, err)
continue
}
vals[key] = cty.StringVal(rawVal)
}
absConfigAddr := addrs.AbsProviderConfig{
Provider: providerFqn,
Alias: pa.Alias,
core: Functional-style API for terraform.Context Previously terraform.Context was built in an unfortunate way where all of the data was provided up front in terraform.NewContext and then mutated directly by subsequent operations. That made the data flow hard to follow, commonly leading to bugs, and also meant that we were forced to take various actions too early in terraform.NewContext, rather than waiting until a more appropriate time during an operation. This (enormous) commit changes terraform.Context so that its fields are broadly just unchanging data about the execution context (current workspace name, available plugins, etc) whereas the main data Terraform works with arrives via individual method arguments and is returned in return values. Specifically, this means that terraform.Context no longer "has-a" config, state, and "planned changes", instead holding on to those only temporarily during an operation. The caller is responsible for propagating the outcome of one step into the next step so that the data flow between operations is actually visible. However, since that's a change to the main entry points in the "terraform" package, this commit also touches every file in the codebase which interacted with those APIs. Most of the noise here is in updating tests to take the same actions using the new API style, but this also affects the main-code callers in the backends and in the command package. My goal here was to refactor without changing observable behavior, but in practice there are a couple externally-visible behavior variations here that seemed okay in service of the broader goal: - The "terraform graph" command is no longer hooked directly into the core graph builders, because that's no longer part of the public API. However, I did include a couple new Context functions whose contract is to produce a UI-oriented graph, and _for now_ those continue to return the physical graph we use for those operations. There's no exported API for generating the "validate" and "eval" graphs, because neither is particularly interesting in its own right, and so "terraform graph" no longer supports those graph types. - terraform.NewContext no longer has the responsibility for collecting all of the provider schemas up front. Instead, we wait until we need them. However, that means that some of our error messages now have a slightly different shape due to unwinding through a differently-shaped call stack. As of this commit we also end up reloading the schemas multiple times in some cases, which is functionally acceptable but likely represents a performance regression. I intend to rework this to use caching, but I'm saving that for a later commit because this one is big enough already. The proximal reason for this change is to resolve the chicken/egg problem whereby there was previously no single point where we could apply "moved" statements to the previous run state before creating a plan. With this change in place, we can now do that as part of Context.Plan, prior to forking the input state into the three separate state artifacts we use during planning. However, this is at least the third project in a row where the previous API design led to piling more functionality into terraform.NewContext and then working around the incorrect order of operations that produces, so I intend that by paying the cost/risk of this large diff now we can in turn reduce the cost/risk of future projects that relate to our main workflow actions.
2021-08-24 14:06:38 -05:00
Module: config.Path,
}
c.providerInputConfig[absConfigAddr.String()] = vals
log.Printf("[TRACE] Context.Input: Input for %s: %#v", pk, vals)
}
}
return diags
}
// schemaForInputSniffing returns a transformed version of a given schema
// that marks all attributes as optional, which the Context.Input method can
// use to detect whether a required argument is set without missing arguments
// themselves generating errors.
func schemaForInputSniffing(schema *hcl.BodySchema) *hcl.BodySchema {
ret := &hcl.BodySchema{
Attributes: make([]hcl.AttributeSchema, len(schema.Attributes)),
Blocks: schema.Blocks,
}
for i, attrS := range schema.Attributes {
ret.Attributes[i] = attrS
ret.Attributes[i].Required = false
}
return ret
}