opentofu/terraform/node_resource_apply.go

116 lines
3.8 KiB
Go
Raw Normal View History

package terraform
import (
"log"
"github.com/hashicorp/terraform/addrs"
"github.com/hashicorp/terraform/dag"
"github.com/hashicorp/terraform/lang"
)
// nodeExpandApplyableResource handles the first layer of resource
2020-03-24 14:19:12 -05:00
// expansion during apply. This is required because EvalTree does not have a
// context with which to expand the resource into multiple instances.
// This type should be a drop in replacement for NodeApplyableResource, and
// needs to mirror any non-evaluation methods exactly.
// TODO: We may want to simplify this later by passing EvalContext to EvalTree,
// and returning an EvalEquence.
type nodeExpandApplyableResource struct {
*NodeAbstractResource
}
var (
_ GraphNodeDynamicExpandable = (*nodeExpandApplyableResource)(nil)
_ GraphNodeReferenceable = (*nodeExpandApplyableResource)(nil)
_ GraphNodeReferencer = (*nodeExpandApplyableResource)(nil)
_ GraphNodeConfigResource = (*nodeExpandApplyableResource)(nil)
_ GraphNodeAttachResourceConfig = (*nodeExpandApplyableResource)(nil)
)
func (n *nodeExpandApplyableResource) References() []*addrs.Reference {
return (&NodeApplyableResource{NodeAbstractResource: n.NodeAbstractResource}).References()
}
func (n *nodeExpandApplyableResource) Name() string {
return n.NodeAbstractResource.Name() + " (prepare state)"
}
func (n *nodeExpandApplyableResource) DynamicExpand(ctx EvalContext) (*Graph, error) {
var g Graph
expander := ctx.InstanceExpander()
for _, module := range expander.ExpandModule(n.Addr.Module) {
g.Add(&NodeApplyableResource{
NodeAbstractResource: n.NodeAbstractResource,
Addr: n.Addr.Resource.Absolute(module),
})
}
return &g, nil
}
// NodeApplyableResource represents a resource that is "applyable":
// it may need to have its record in the state adjusted to match configuration.
//
// Unlike in the plan walk, this resource node does not DynamicExpand. Instead,
// it should be inserted into the same graph as any instances of the nodes
// with dependency edges ensuring that the resource is evaluated before any
// of its instances, which will turn ensure that the whole-resource record
// in the state is suitably prepared to receive any updates to instances.
type NodeApplyableResource struct {
*NodeAbstractResource
Addr addrs.AbsResource
}
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
var (
_ GraphNodeModuleInstance = (*NodeApplyableResource)(nil)
_ GraphNodeConfigResource = (*NodeApplyableResource)(nil)
_ GraphNodeEvalable = (*NodeApplyableResource)(nil)
_ GraphNodeProviderConsumer = (*NodeApplyableResource)(nil)
_ GraphNodeAttachResourceConfig = (*NodeApplyableResource)(nil)
_ GraphNodeReferencer = (*NodeApplyableResource)(nil)
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
)
func (n *NodeApplyableResource) Path() addrs.ModuleInstance {
return n.Addr.Module
}
func (n *NodeApplyableResource) Name() string {
return n.NodeAbstractResource.Name() + " (prepare state)"
terraform: apply resource must depend on destroy deps Fixes #10440 This updates the behavior of "apply" resources to depend on the destroy versions of their dependencies. We make an exception to this behavior when the "apply" resource is CBD. This is odd and not 100% correct, but it mimics the behavior of the legacy graphs and avoids us having to do major core work to support the 100% correct solution. I'll explain this in examples... Given the following configuration: resource "null_resource" "a" { count = "${var.count}" } resource "null_resource" "b" { triggers { key = "${join(",", null_resource.a.*.id)}" } } Assume we've successfully created this configuration with count = 2. When going from count = 2 to count = 1, `null_resource.b` should wait for `null_resource.a.1` to destroy. If it doesn't, then it is a race: depending when we interpolate the `triggers.key` attribute of `null_resource.b`, we may get 1 value or 2. If `null_resource.a.1` is destroyed, we'll get 1. Otherwise, we'll get 2. This was the root cause of #10440 In the legacy graphs, `null_resource.b` would depend on the destruction of any `null_resource.a` (orphans, tainted, anything!). This would ensure proper ordering. We mimic that behavior here. The difference is CBD. If `null_resource.b` has CBD enabled, then the ordering **in the legacy graph** becomes: 1. null_resource.b (create) 2. null_resource.b (destroy) 3. null_resource.a (destroy) In this case, the update would always have 2 values for `triggers.key`, even though we were destroying a resource later! This scenario required two `terraform apply` operations. This is what the CBD check is for in this PR. We do this to mimic the behavior of the legacy graph. The correct solution to do one day is to allow splat references (`null_resource.a.*.id`) to happen in parallel and only read up to to the `count` amount in the state. This requires some fairly significant work close to the 0.8 release date, so we can defer this to later and adopt the 0.7.x behavior for now.
2016-12-04 01:44:09 -06:00
}
func (n *NodeApplyableResource) References() []*addrs.Reference {
if n.Config == nil {
log.Printf("[WARN] NodeApplyableResource %q: no configuration, so can't determine References", dag.VertexName(n))
return nil
}
var result []*addrs.Reference
// Since this node type only updates resource-level metadata, we only
// need to worry about the parts of the configuration that affect
// our "each mode": the count and for_each meta-arguments.
refs, _ := lang.ReferencesInExpr(n.Config.Count)
result = append(result, refs...)
refs, _ = lang.ReferencesInExpr(n.Config.ForEach)
result = append(result, refs...)
return result
}
2016-09-13 19:52:09 -05:00
// GraphNodeEvalable
func (n *NodeApplyableResource) EvalTree() EvalNode {
if n.Config == nil {
// Nothing to do, then.
log.Printf("[TRACE] NodeApplyableResource: no configuration present for %s", n.Name())
return &EvalNoop{}
}
2016-09-13 19:52:09 -05:00
return &EvalWriteResourceState{
Addr: n.Addr,
Config: n.Config,
ProviderAddr: n.ResolvedProvider,
2016-09-13 19:52:09 -05:00
}
}