opentofu/terraform/node_resource_plan_instance.go

238 lines
6.6 KiB
Go
Raw Normal View History

package terraform
import (
"fmt"
"log"
"sort"
"github.com/hashicorp/terraform/plans"
"github.com/hashicorp/terraform/states"
2020-10-28 10:57:45 -05:00
"github.com/hashicorp/terraform/tfdiags"
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
"github.com/hashicorp/terraform/addrs"
)
// NodePlannableResourceInstance represents a _single_ resource
// instance that is plannable. This means this represents a single
// count index, for example.
type NodePlannableResourceInstance struct {
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
*NodeAbstractResourceInstance
ForceCreateBeforeDestroy bool
skipRefresh bool
}
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
var (
_ GraphNodeModuleInstance = (*NodePlannableResourceInstance)(nil)
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
_ GraphNodeReferenceable = (*NodePlannableResourceInstance)(nil)
_ GraphNodeReferencer = (*NodePlannableResourceInstance)(nil)
_ GraphNodeConfigResource = (*NodePlannableResourceInstance)(nil)
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
_ GraphNodeResourceInstance = (*NodePlannableResourceInstance)(nil)
_ GraphNodeAttachResourceConfig = (*NodePlannableResourceInstance)(nil)
_ GraphNodeAttachResourceState = (*NodePlannableResourceInstance)(nil)
2020-09-29 13:31:20 -05:00
_ GraphNodeExecutable = (*NodePlannableResourceInstance)(nil)
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
)
// GraphNodeEvalable
func (n *NodePlannableResourceInstance) Execute(ctx EvalContext, op walkOperation) tfdiags.Diagnostics {
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
addr := n.ResourceInstanceAddr()
// Eval info is different depending on what kind of resource this is
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
switch addr.Resource.Resource.Mode {
case addrs.ManagedResourceMode:
return n.managedResourceExecute(ctx)
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
case addrs.DataResourceMode:
2020-09-29 13:31:20 -05:00
return n.dataResourceExecute(ctx)
default:
panic(fmt.Errorf("unsupported resource mode %s", n.Config.Mode))
}
}
func (n *NodePlannableResourceInstance) dataResourceExecute(ctx EvalContext) (diags tfdiags.Diagnostics) {
config := n.Config
2020-09-29 13:31:20 -05:00
addr := n.ResourceInstanceAddr()
var change *plans.ResourceInstanceChange
var state *states.ResourceInstanceObject
_, providerSchema, err := getProvider(ctx, n.ResolvedProvider)
diags = diags.Append(err)
if diags.HasErrors() {
return diags
2020-09-29 13:31:20 -05:00
}
Eval() Refactor: Plan Edition (#27177) * terraforn: refactor EvalRefresh EvalRefresh.Eval(ctx) is now Refresh(evalRefreshReqest, ctx). While none of the inner logic of the function has changed, it now returns a states.ResourceInstanceObject instead of updating a pointer. This is a human-centric change, meant to make the logic flow (in the calling functions) easier to follow. * terraform: refactor EvalReadDataPlan and Apply This is a very minor refactor that removes the (currently) redundant types EvalReadDataPlan and EvalReadDataApply in favor of using EvalReadData with a Plan and Apply functions. This is in effect an aesthetic change; since there is no longer an Eval() abstraction we can rename functions to make their functionality as obvious as possible. * terraform: refactor EvalCheckPlannedChange EvalCheckPlannedChange was only used by NodeApplyableResourceInstance and has been refactored into a method on that type called checkPlannedChange. * terraform: refactor EvalDiff.Eval EvalDiff.Eval is now a method on NodeResourceAbstracted called Plan which takes as a parameter an EvalPlanRequest. Instead of updating pointers it returns a new plan and state. I removed as many redundant fields from the original EvalDiff struct as possible. * terraform: refactor EvalReduceDiff EvalReduceDiff is now reducePlan, a regular function (without a method) that returns a value. * terraform: refactor EvalDiffDestroy EvalDiffDestroy.Eval is now NodeAbstractResourceInstance.PlanDestroy which takes ctx, state and optional DeposedKey and returns a change. I've removed the state return value since it was only ever returning a nil state. * terraform: refactor EvalWriteDiff EvalWriteDiff.Eval is now NodeAbstractResourceInstance.WriteChange. * rename files to something more logical * terrafrom: refresh refactor, continued! I had originally made Refresh a stand-alone function since it was (obnoxiously) called from a graphNodeImportStateSub, but after some (greatly appreciated) prompting in the PR I instead made it a method on the NodeAbstractResourceInstance, in keeping with the other refactored eval nodes, and then built a NodeAbstractResourceInstance inside import. Since I did that I could also remove my duplicated 'writeState' code inside graphNodeImportStateSub and use n.writeResourceInstanceState, so double thanks! * unexport eval methods * re-refactor Plan, it made more sense on NodeAbstractResourceInstance. Sorry * Remove uninformative `Eval`s from EvalReadData, consolidate to a single file, and rename file to match function names. * manual rebase
2020-12-08 07:50:30 -06:00
state, err = n.readResourceInstanceState(ctx, addr)
diags = diags.Append(err)
if diags.HasErrors() {
return diags
2020-09-29 13:31:20 -05:00
}
diags = diags.Append(validateSelfRef(addr.Resource, config.Config, providerSchema))
2020-10-28 11:32:49 -05:00
if diags.HasErrors() {
return diags
2020-09-29 13:31:20 -05:00
}
change, state, planDiags := n.planDataSource(ctx, state)
diags = diags.Append(planDiags)
2020-10-28 10:57:45 -05:00
if diags.HasErrors() {
return diags
2020-09-29 13:31:20 -05:00
}
// write the data source into both the refresh state and the
// working state
diags = diags.Append(n.writeResourceInstanceState(ctx, state, refreshState))
2020-10-28 11:23:03 -05:00
if diags.HasErrors() {
return diags
2020-09-29 13:31:20 -05:00
}
diags = diags.Append(n.writeResourceInstanceState(ctx, state, workingState))
2020-10-28 11:23:03 -05:00
if diags.HasErrors() {
return diags
2020-09-29 13:31:20 -05:00
}
Eval() Refactor: Plan Edition (#27177) * terraforn: refactor EvalRefresh EvalRefresh.Eval(ctx) is now Refresh(evalRefreshReqest, ctx). While none of the inner logic of the function has changed, it now returns a states.ResourceInstanceObject instead of updating a pointer. This is a human-centric change, meant to make the logic flow (in the calling functions) easier to follow. * terraform: refactor EvalReadDataPlan and Apply This is a very minor refactor that removes the (currently) redundant types EvalReadDataPlan and EvalReadDataApply in favor of using EvalReadData with a Plan and Apply functions. This is in effect an aesthetic change; since there is no longer an Eval() abstraction we can rename functions to make their functionality as obvious as possible. * terraform: refactor EvalCheckPlannedChange EvalCheckPlannedChange was only used by NodeApplyableResourceInstance and has been refactored into a method on that type called checkPlannedChange. * terraform: refactor EvalDiff.Eval EvalDiff.Eval is now a method on NodeResourceAbstracted called Plan which takes as a parameter an EvalPlanRequest. Instead of updating pointers it returns a new plan and state. I removed as many redundant fields from the original EvalDiff struct as possible. * terraform: refactor EvalReduceDiff EvalReduceDiff is now reducePlan, a regular function (without a method) that returns a value. * terraform: refactor EvalDiffDestroy EvalDiffDestroy.Eval is now NodeAbstractResourceInstance.PlanDestroy which takes ctx, state and optional DeposedKey and returns a change. I've removed the state return value since it was only ever returning a nil state. * terraform: refactor EvalWriteDiff EvalWriteDiff.Eval is now NodeAbstractResourceInstance.WriteChange. * rename files to something more logical * terrafrom: refresh refactor, continued! I had originally made Refresh a stand-alone function since it was (obnoxiously) called from a graphNodeImportStateSub, but after some (greatly appreciated) prompting in the PR I instead made it a method on the NodeAbstractResourceInstance, in keeping with the other refactored eval nodes, and then built a NodeAbstractResourceInstance inside import. Since I did that I could also remove my duplicated 'writeState' code inside graphNodeImportStateSub and use n.writeResourceInstanceState, so double thanks! * unexport eval methods * re-refactor Plan, it made more sense on NodeAbstractResourceInstance. Sorry * Remove uninformative `Eval`s from EvalReadData, consolidate to a single file, and rename file to match function names. * manual rebase
2020-12-08 07:50:30 -06:00
diags = diags.Append(n.writeChange(ctx, change, ""))
return diags
}
func (n *NodePlannableResourceInstance) managedResourceExecute(ctx EvalContext) (diags tfdiags.Diagnostics) {
config := n.Config
2020-09-29 13:31:20 -05:00
addr := n.ResourceInstanceAddr()
var change *plans.ResourceInstanceChange
var instanceRefreshState *states.ResourceInstanceObject
var instancePlanState *states.ResourceInstanceObject
_, providerSchema, err := getProvider(ctx, n.ResolvedProvider)
diags = diags.Append(err)
if diags.HasErrors() {
return diags
2020-09-29 13:31:20 -05:00
}
diags = diags.Append(validateSelfRef(addr.Resource, config.Config, providerSchema))
2020-10-28 11:32:49 -05:00
if diags.HasErrors() {
return diags
2020-09-29 13:31:20 -05:00
}
Eval() Refactor: Plan Edition (#27177) * terraforn: refactor EvalRefresh EvalRefresh.Eval(ctx) is now Refresh(evalRefreshReqest, ctx). While none of the inner logic of the function has changed, it now returns a states.ResourceInstanceObject instead of updating a pointer. This is a human-centric change, meant to make the logic flow (in the calling functions) easier to follow. * terraform: refactor EvalReadDataPlan and Apply This is a very minor refactor that removes the (currently) redundant types EvalReadDataPlan and EvalReadDataApply in favor of using EvalReadData with a Plan and Apply functions. This is in effect an aesthetic change; since there is no longer an Eval() abstraction we can rename functions to make their functionality as obvious as possible. * terraform: refactor EvalCheckPlannedChange EvalCheckPlannedChange was only used by NodeApplyableResourceInstance and has been refactored into a method on that type called checkPlannedChange. * terraform: refactor EvalDiff.Eval EvalDiff.Eval is now a method on NodeResourceAbstracted called Plan which takes as a parameter an EvalPlanRequest. Instead of updating pointers it returns a new plan and state. I removed as many redundant fields from the original EvalDiff struct as possible. * terraform: refactor EvalReduceDiff EvalReduceDiff is now reducePlan, a regular function (without a method) that returns a value. * terraform: refactor EvalDiffDestroy EvalDiffDestroy.Eval is now NodeAbstractResourceInstance.PlanDestroy which takes ctx, state and optional DeposedKey and returns a change. I've removed the state return value since it was only ever returning a nil state. * terraform: refactor EvalWriteDiff EvalWriteDiff.Eval is now NodeAbstractResourceInstance.WriteChange. * rename files to something more logical * terrafrom: refresh refactor, continued! I had originally made Refresh a stand-alone function since it was (obnoxiously) called from a graphNodeImportStateSub, but after some (greatly appreciated) prompting in the PR I instead made it a method on the NodeAbstractResourceInstance, in keeping with the other refactored eval nodes, and then built a NodeAbstractResourceInstance inside import. Since I did that I could also remove my duplicated 'writeState' code inside graphNodeImportStateSub and use n.writeResourceInstanceState, so double thanks! * unexport eval methods * re-refactor Plan, it made more sense on NodeAbstractResourceInstance. Sorry * Remove uninformative `Eval`s from EvalReadData, consolidate to a single file, and rename file to match function names. * manual rebase
2020-12-08 07:50:30 -06:00
instanceRefreshState, err = n.readResourceInstanceState(ctx, addr)
diags = diags.Append(err)
if diags.HasErrors() {
return diags
}
// In 0.13 we could be refreshing a resource with no config.
// We should be operating on managed resource, but check here to be certain
if n.Config == nil || n.Config.Managed == nil {
log.Printf("[WARN] managedResourceExecute: no Managed config value found in instance state for %q", n.Addr)
} else {
if instanceRefreshState != nil {
instanceRefreshState.CreateBeforeDestroy = n.Config.Managed.CreateBeforeDestroy || n.ForceCreateBeforeDestroy
}
}
2020-09-29 13:31:20 -05:00
// Refresh, maybe
if !n.skipRefresh {
s, refreshDiags := n.refresh(ctx, instanceRefreshState)
Eval() Refactor: Plan Edition (#27177) * terraforn: refactor EvalRefresh EvalRefresh.Eval(ctx) is now Refresh(evalRefreshReqest, ctx). While none of the inner logic of the function has changed, it now returns a states.ResourceInstanceObject instead of updating a pointer. This is a human-centric change, meant to make the logic flow (in the calling functions) easier to follow. * terraform: refactor EvalReadDataPlan and Apply This is a very minor refactor that removes the (currently) redundant types EvalReadDataPlan and EvalReadDataApply in favor of using EvalReadData with a Plan and Apply functions. This is in effect an aesthetic change; since there is no longer an Eval() abstraction we can rename functions to make their functionality as obvious as possible. * terraform: refactor EvalCheckPlannedChange EvalCheckPlannedChange was only used by NodeApplyableResourceInstance and has been refactored into a method on that type called checkPlannedChange. * terraform: refactor EvalDiff.Eval EvalDiff.Eval is now a method on NodeResourceAbstracted called Plan which takes as a parameter an EvalPlanRequest. Instead of updating pointers it returns a new plan and state. I removed as many redundant fields from the original EvalDiff struct as possible. * terraform: refactor EvalReduceDiff EvalReduceDiff is now reducePlan, a regular function (without a method) that returns a value. * terraform: refactor EvalDiffDestroy EvalDiffDestroy.Eval is now NodeAbstractResourceInstance.PlanDestroy which takes ctx, state and optional DeposedKey and returns a change. I've removed the state return value since it was only ever returning a nil state. * terraform: refactor EvalWriteDiff EvalWriteDiff.Eval is now NodeAbstractResourceInstance.WriteChange. * rename files to something more logical * terrafrom: refresh refactor, continued! I had originally made Refresh a stand-alone function since it was (obnoxiously) called from a graphNodeImportStateSub, but after some (greatly appreciated) prompting in the PR I instead made it a method on the NodeAbstractResourceInstance, in keeping with the other refactored eval nodes, and then built a NodeAbstractResourceInstance inside import. Since I did that I could also remove my duplicated 'writeState' code inside graphNodeImportStateSub and use n.writeResourceInstanceState, so double thanks! * unexport eval methods * re-refactor Plan, it made more sense on NodeAbstractResourceInstance. Sorry * Remove uninformative `Eval`s from EvalReadData, consolidate to a single file, and rename file to match function names. * manual rebase
2020-12-08 07:50:30 -06:00
diags = diags.Append(refreshDiags)
2020-10-28 11:03:00 -05:00
if diags.HasErrors() {
return diags
2020-09-29 13:31:20 -05:00
}
instanceRefreshState = s
2020-09-29 13:31:20 -05:00
if instanceRefreshState != nil {
// When refreshing we start by merging the stored dependencies and
// the configured dependencies. The configured dependencies will be
// stored to state once the changes are applied. If the plan
// results in no changes, we will re-write these dependencies
// below.
instanceRefreshState.Dependencies = mergeDeps(n.Dependencies, instanceRefreshState.Dependencies)
}
diags = diags.Append(n.writeResourceInstanceState(ctx, instanceRefreshState, refreshState))
2020-10-28 11:23:03 -05:00
if diags.HasErrors() {
return diags
2020-09-29 13:31:20 -05:00
}
}
// Plan the instance
Eval() Refactor: Plan Edition (#27177) * terraforn: refactor EvalRefresh EvalRefresh.Eval(ctx) is now Refresh(evalRefreshReqest, ctx). While none of the inner logic of the function has changed, it now returns a states.ResourceInstanceObject instead of updating a pointer. This is a human-centric change, meant to make the logic flow (in the calling functions) easier to follow. * terraform: refactor EvalReadDataPlan and Apply This is a very minor refactor that removes the (currently) redundant types EvalReadDataPlan and EvalReadDataApply in favor of using EvalReadData with a Plan and Apply functions. This is in effect an aesthetic change; since there is no longer an Eval() abstraction we can rename functions to make their functionality as obvious as possible. * terraform: refactor EvalCheckPlannedChange EvalCheckPlannedChange was only used by NodeApplyableResourceInstance and has been refactored into a method on that type called checkPlannedChange. * terraform: refactor EvalDiff.Eval EvalDiff.Eval is now a method on NodeResourceAbstracted called Plan which takes as a parameter an EvalPlanRequest. Instead of updating pointers it returns a new plan and state. I removed as many redundant fields from the original EvalDiff struct as possible. * terraform: refactor EvalReduceDiff EvalReduceDiff is now reducePlan, a regular function (without a method) that returns a value. * terraform: refactor EvalDiffDestroy EvalDiffDestroy.Eval is now NodeAbstractResourceInstance.PlanDestroy which takes ctx, state and optional DeposedKey and returns a change. I've removed the state return value since it was only ever returning a nil state. * terraform: refactor EvalWriteDiff EvalWriteDiff.Eval is now NodeAbstractResourceInstance.WriteChange. * rename files to something more logical * terrafrom: refresh refactor, continued! I had originally made Refresh a stand-alone function since it was (obnoxiously) called from a graphNodeImportStateSub, but after some (greatly appreciated) prompting in the PR I instead made it a method on the NodeAbstractResourceInstance, in keeping with the other refactored eval nodes, and then built a NodeAbstractResourceInstance inside import. Since I did that I could also remove my duplicated 'writeState' code inside graphNodeImportStateSub and use n.writeResourceInstanceState, so double thanks! * unexport eval methods * re-refactor Plan, it made more sense on NodeAbstractResourceInstance. Sorry * Remove uninformative `Eval`s from EvalReadData, consolidate to a single file, and rename file to match function names. * manual rebase
2020-12-08 07:50:30 -06:00
change, instancePlanState, planDiags := n.plan(ctx, change, instanceRefreshState, n.ForceCreateBeforeDestroy)
diags = diags.Append(planDiags)
2020-10-28 10:46:07 -05:00
if diags.HasErrors() {
return diags
2020-09-29 13:31:20 -05:00
}
diags = diags.Append(n.checkPreventDestroy(change))
if diags.HasErrors() {
return diags
2020-09-29 13:31:20 -05:00
}
diags = diags.Append(n.writeResourceInstanceState(ctx, instancePlanState, workingState))
2020-10-28 11:23:03 -05:00
if diags.HasErrors() {
return diags
2020-09-29 13:31:20 -05:00
}
// If this plan resulted in a NoOp, then apply won't have a chance to make
// any changes to the stored dependencies. Since this is a NoOp we know
// that the stored dependencies will have no effect during apply, and we can
// write them out now.
if change.Action == plans.NoOp && !depsEqual(instanceRefreshState.Dependencies, n.Dependencies) {
// the refresh state will be the final state for this resource, so
// finalize the dependencies here if they need to be updated.
instanceRefreshState.Dependencies = n.Dependencies
diags = diags.Append(n.writeResourceInstanceState(ctx, instanceRefreshState, refreshState))
if diags.HasErrors() {
return diags
}
}
Eval() Refactor: Plan Edition (#27177) * terraforn: refactor EvalRefresh EvalRefresh.Eval(ctx) is now Refresh(evalRefreshReqest, ctx). While none of the inner logic of the function has changed, it now returns a states.ResourceInstanceObject instead of updating a pointer. This is a human-centric change, meant to make the logic flow (in the calling functions) easier to follow. * terraform: refactor EvalReadDataPlan and Apply This is a very minor refactor that removes the (currently) redundant types EvalReadDataPlan and EvalReadDataApply in favor of using EvalReadData with a Plan and Apply functions. This is in effect an aesthetic change; since there is no longer an Eval() abstraction we can rename functions to make their functionality as obvious as possible. * terraform: refactor EvalCheckPlannedChange EvalCheckPlannedChange was only used by NodeApplyableResourceInstance and has been refactored into a method on that type called checkPlannedChange. * terraform: refactor EvalDiff.Eval EvalDiff.Eval is now a method on NodeResourceAbstracted called Plan which takes as a parameter an EvalPlanRequest. Instead of updating pointers it returns a new plan and state. I removed as many redundant fields from the original EvalDiff struct as possible. * terraform: refactor EvalReduceDiff EvalReduceDiff is now reducePlan, a regular function (without a method) that returns a value. * terraform: refactor EvalDiffDestroy EvalDiffDestroy.Eval is now NodeAbstractResourceInstance.PlanDestroy which takes ctx, state and optional DeposedKey and returns a change. I've removed the state return value since it was only ever returning a nil state. * terraform: refactor EvalWriteDiff EvalWriteDiff.Eval is now NodeAbstractResourceInstance.WriteChange. * rename files to something more logical * terrafrom: refresh refactor, continued! I had originally made Refresh a stand-alone function since it was (obnoxiously) called from a graphNodeImportStateSub, but after some (greatly appreciated) prompting in the PR I instead made it a method on the NodeAbstractResourceInstance, in keeping with the other refactored eval nodes, and then built a NodeAbstractResourceInstance inside import. Since I did that I could also remove my duplicated 'writeState' code inside graphNodeImportStateSub and use n.writeResourceInstanceState, so double thanks! * unexport eval methods * re-refactor Plan, it made more sense on NodeAbstractResourceInstance. Sorry * Remove uninformative `Eval`s from EvalReadData, consolidate to a single file, and rename file to match function names. * manual rebase
2020-12-08 07:50:30 -06:00
diags = diags.Append(n.writeChange(ctx, change, ""))
return diags
}
// mergeDeps returns the union of 2 sets of dependencies
func mergeDeps(a, b []addrs.ConfigResource) []addrs.ConfigResource {
switch {
case len(a) == 0:
return b
case len(b) == 0:
return a
}
set := make(map[string]addrs.ConfigResource)
for _, dep := range a {
set[dep.String()] = dep
}
for _, dep := range b {
set[dep.String()] = dep
}
newDeps := make([]addrs.ConfigResource, 0, len(set))
for _, dep := range set {
newDeps = append(newDeps, dep)
}
return newDeps
}
func depsEqual(a, b []addrs.ConfigResource) bool {
if len(a) != len(b) {
return false
}
less := func(s []addrs.ConfigResource) func(i, j int) bool {
return func(i, j int) bool {
return s[i].String() < s[j].String()
}
}
sort.Slice(a, less(a))
sort.Slice(b, less(b))
for i := range a {
if !a[i].Equal(b[i]) {
return false
}
}
return true
}