opentofu/internal/terraform/node_root_variable_test.go

167 lines
5.5 KiB
Go
Raw Normal View History

package terraform
import (
"testing"
core: Handle root and child module input variables consistently Previously we had a significant discrepancy between these two situations: we wrote the raw root module variables directly into the EvalContext and then applied type conversions only at expression evaluation time, while for child modules we converted and validated the values while visiting the variable graph node and wrote only the _final_ value into the EvalContext. This confusion seems to have been the root cause for #29899, where validation rules for root module variables were being applied at the wrong point in the process, prior to type conversion. To fix that bug and also make similar mistakes less likely in the future, I've made the root module variable handling more like the child module variable handling in the following ways: - The "raw value" (exactly as given by the user) lives only in the graph node representing the variable, which mirrors how the _expression_ for a child module variable lives in its graph node. This means that the flow for the two is the same except that there's no expression evaluation step for root module variables, because they arrive as constant values from the caller. - The set of variable values in the EvalContext is always only "final" values, after type conversion is complete. That in turn means we no longer need to do "just in time" conversion in evaluationStateData.GetInputVariable, and can just return the value exactly as stored, which is consistent with how we handle all other references between objects. This diff is noisier than I'd like because of how much it takes to wire a new argument (the raw variable values) through to the plan graph builder, but those changes are pretty mechanical and the interesting logic lives inside the plan graph builder itself, in NodeRootVariable, and the shared helper functions in eval_variable.go. While here I also took the opportunity to fix a historical API wart in EvalContext, where SetModuleCallArguments was built to take a set of variable values all at once but our current caller always calls with only one at a time. That is now just SetModuleCallArgument singular, to match with the new SetRootModuleArgument to deal with root module variables.
2021-11-10 19:29:45 -06:00
"github.com/hashicorp/hcl/v2"
"github.com/zclconf/go-cty/cty"
"github.com/hashicorp/terraform/internal/addrs"
"github.com/hashicorp/terraform/internal/configs"
core: Handle root and child module input variables consistently Previously we had a significant discrepancy between these two situations: we wrote the raw root module variables directly into the EvalContext and then applied type conversions only at expression evaluation time, while for child modules we converted and validated the values while visiting the variable graph node and wrote only the _final_ value into the EvalContext. This confusion seems to have been the root cause for #29899, where validation rules for root module variables were being applied at the wrong point in the process, prior to type conversion. To fix that bug and also make similar mistakes less likely in the future, I've made the root module variable handling more like the child module variable handling in the following ways: - The "raw value" (exactly as given by the user) lives only in the graph node representing the variable, which mirrors how the _expression_ for a child module variable lives in its graph node. This means that the flow for the two is the same except that there's no expression evaluation step for root module variables, because they arrive as constant values from the caller. - The set of variable values in the EvalContext is always only "final" values, after type conversion is complete. That in turn means we no longer need to do "just in time" conversion in evaluationStateData.GetInputVariable, and can just return the value exactly as stored, which is consistent with how we handle all other references between objects. This diff is noisier than I'd like because of how much it takes to wire a new argument (the raw variable values) through to the plan graph builder, but those changes are pretty mechanical and the interesting logic lives inside the plan graph builder itself, in NodeRootVariable, and the shared helper functions in eval_variable.go. While here I also took the opportunity to fix a historical API wart in EvalContext, where SetModuleCallArguments was built to take a set of variable values all at once but our current caller always calls with only one at a time. That is now just SetModuleCallArgument singular, to match with the new SetRootModuleArgument to deal with root module variables.
2021-11-10 19:29:45 -06:00
"github.com/hashicorp/terraform/internal/lang"
)
func TestNodeRootVariableExecute(t *testing.T) {
core: Handle root and child module input variables consistently Previously we had a significant discrepancy between these two situations: we wrote the raw root module variables directly into the EvalContext and then applied type conversions only at expression evaluation time, while for child modules we converted and validated the values while visiting the variable graph node and wrote only the _final_ value into the EvalContext. This confusion seems to have been the root cause for #29899, where validation rules for root module variables were being applied at the wrong point in the process, prior to type conversion. To fix that bug and also make similar mistakes less likely in the future, I've made the root module variable handling more like the child module variable handling in the following ways: - The "raw value" (exactly as given by the user) lives only in the graph node representing the variable, which mirrors how the _expression_ for a child module variable lives in its graph node. This means that the flow for the two is the same except that there's no expression evaluation step for root module variables, because they arrive as constant values from the caller. - The set of variable values in the EvalContext is always only "final" values, after type conversion is complete. That in turn means we no longer need to do "just in time" conversion in evaluationStateData.GetInputVariable, and can just return the value exactly as stored, which is consistent with how we handle all other references between objects. This diff is noisier than I'd like because of how much it takes to wire a new argument (the raw variable values) through to the plan graph builder, but those changes are pretty mechanical and the interesting logic lives inside the plan graph builder itself, in NodeRootVariable, and the shared helper functions in eval_variable.go. While here I also took the opportunity to fix a historical API wart in EvalContext, where SetModuleCallArguments was built to take a set of variable values all at once but our current caller always calls with only one at a time. That is now just SetModuleCallArgument singular, to match with the new SetRootModuleArgument to deal with root module variables.
2021-11-10 19:29:45 -06:00
t.Run("type conversion", func(t *testing.T) {
ctx := new(MockEvalContext)
n := &NodeRootVariable{
Addr: addrs.InputVariable{Name: "foo"},
Config: &configs.Variable{
Name: "foo",
Type: cty.String,
ConstraintType: cty.String,
},
RawValue: &InputValue{
Value: cty.True,
SourceType: ValueFromUnknown,
},
}
diags := n.Execute(ctx, walkApply)
if diags.HasErrors() {
t.Fatalf("unexpected error: %s", diags.Err())
}
if !ctx.SetRootModuleArgumentCalled {
t.Fatalf("ctx.SetRootModuleArgument wasn't called")
}
if got, want := ctx.SetRootModuleArgumentAddr.String(), "var.foo"; got != want {
t.Errorf("wrong address for ctx.SetRootModuleArgument\ngot: %s\nwant: %s", got, want)
}
if got, want := ctx.SetRootModuleArgumentValue, cty.StringVal("true"); !want.RawEquals(got) {
// NOTE: The given value was cty.Bool but the type constraint was
// cty.String, so it was NodeRootVariable's responsibility to convert
// as part of preparing the "final value".
t.Errorf("wrong value for ctx.SetRootModuleArgument\ngot: %#v\nwant: %#v", got, want)
}
})
t.Run("validation", func(t *testing.T) {
ctx := new(MockEvalContext)
// The variable validation function gets called with Terraform's
// built-in functions available, so we need a minimal scope just for
// it to get the functions from.
ctx.EvaluationScopeScope = &lang.Scope{}
// We need to reimplement a _little_ bit of EvalContextBuiltin logic
// here to get a similar effect with EvalContextMock just to get the
// value to flow through here in a realistic way that'll make this test
// useful.
var finalVal cty.Value
ctx.SetRootModuleArgumentFunc = func(addr addrs.InputVariable, v cty.Value) {
if addr.Name == "foo" {
t.Logf("set %s to %#v", addr.String(), v)
finalVal = v
}
}
ctx.GetVariableValueFunc = func(addr addrs.AbsInputVariableInstance) cty.Value {
if addr.String() != "var.foo" {
return cty.NilVal
}
t.Logf("reading final val for %s (%#v)", addr.String(), finalVal)
return finalVal
}
n := &NodeRootVariable{
Addr: addrs.InputVariable{Name: "foo"},
Config: &configs.Variable{
Name: "foo",
Type: cty.Number,
ConstraintType: cty.Number,
Validations: []*configs.CheckRule{
core: Handle root and child module input variables consistently Previously we had a significant discrepancy between these two situations: we wrote the raw root module variables directly into the EvalContext and then applied type conversions only at expression evaluation time, while for child modules we converted and validated the values while visiting the variable graph node and wrote only the _final_ value into the EvalContext. This confusion seems to have been the root cause for #29899, where validation rules for root module variables were being applied at the wrong point in the process, prior to type conversion. To fix that bug and also make similar mistakes less likely in the future, I've made the root module variable handling more like the child module variable handling in the following ways: - The "raw value" (exactly as given by the user) lives only in the graph node representing the variable, which mirrors how the _expression_ for a child module variable lives in its graph node. This means that the flow for the two is the same except that there's no expression evaluation step for root module variables, because they arrive as constant values from the caller. - The set of variable values in the EvalContext is always only "final" values, after type conversion is complete. That in turn means we no longer need to do "just in time" conversion in evaluationStateData.GetInputVariable, and can just return the value exactly as stored, which is consistent with how we handle all other references between objects. This diff is noisier than I'd like because of how much it takes to wire a new argument (the raw variable values) through to the plan graph builder, but those changes are pretty mechanical and the interesting logic lives inside the plan graph builder itself, in NodeRootVariable, and the shared helper functions in eval_variable.go. While here I also took the opportunity to fix a historical API wart in EvalContext, where SetModuleCallArguments was built to take a set of variable values all at once but our current caller always calls with only one at a time. That is now just SetModuleCallArgument singular, to match with the new SetRootModuleArgument to deal with root module variables.
2021-11-10 19:29:45 -06:00
{
Condition: fakeHCLExpressionFunc(func(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
// This returns true only if the given variable value
// is exactly cty.Number, which allows us to verify
// that we were given the value _after_ type
// conversion.
// This had previously not been handled correctly,
// as reported in:
// https://github.com/hashicorp/terraform/issues/29899
vars := ctx.Variables["var"]
if vars == cty.NilVal || !vars.Type().IsObjectType() || !vars.Type().HasAttribute("foo") {
t.Logf("var.foo isn't available")
return cty.False, nil
}
val := vars.GetAttr("foo")
if val == cty.NilVal || val.Type() != cty.Number {
t.Logf("var.foo is %#v; want a number", val)
return cty.False, nil
}
return cty.True, nil
}),
ErrorMessage: "Must be a number.",
},
},
},
RawValue: &InputValue{
// Note: This is a string, but the variable's type constraint
// is number so it should be converted before use.
Value: cty.StringVal("5"),
SourceType: ValueFromUnknown,
},
}
core: Handle root and child module input variables consistently Previously we had a significant discrepancy between these two situations: we wrote the raw root module variables directly into the EvalContext and then applied type conversions only at expression evaluation time, while for child modules we converted and validated the values while visiting the variable graph node and wrote only the _final_ value into the EvalContext. This confusion seems to have been the root cause for #29899, where validation rules for root module variables were being applied at the wrong point in the process, prior to type conversion. To fix that bug and also make similar mistakes less likely in the future, I've made the root module variable handling more like the child module variable handling in the following ways: - The "raw value" (exactly as given by the user) lives only in the graph node representing the variable, which mirrors how the _expression_ for a child module variable lives in its graph node. This means that the flow for the two is the same except that there's no expression evaluation step for root module variables, because they arrive as constant values from the caller. - The set of variable values in the EvalContext is always only "final" values, after type conversion is complete. That in turn means we no longer need to do "just in time" conversion in evaluationStateData.GetInputVariable, and can just return the value exactly as stored, which is consistent with how we handle all other references between objects. This diff is noisier than I'd like because of how much it takes to wire a new argument (the raw variable values) through to the plan graph builder, but those changes are pretty mechanical and the interesting logic lives inside the plan graph builder itself, in NodeRootVariable, and the shared helper functions in eval_variable.go. While here I also took the opportunity to fix a historical API wart in EvalContext, where SetModuleCallArguments was built to take a set of variable values all at once but our current caller always calls with only one at a time. That is now just SetModuleCallArgument singular, to match with the new SetRootModuleArgument to deal with root module variables.
2021-11-10 19:29:45 -06:00
diags := n.Execute(ctx, walkApply)
if diags.HasErrors() {
t.Fatalf("unexpected error: %s", diags.Err())
}
if !ctx.SetRootModuleArgumentCalled {
t.Fatalf("ctx.SetRootModuleArgument wasn't called")
}
if got, want := ctx.SetRootModuleArgumentAddr.String(), "var.foo"; got != want {
t.Errorf("wrong address for ctx.SetRootModuleArgument\ngot: %s\nwant: %s", got, want)
}
if got, want := ctx.SetRootModuleArgumentValue, cty.NumberIntVal(5); !want.RawEquals(got) {
// NOTE: The given value was cty.Bool but the type constraint was
// cty.String, so it was NodeRootVariable's responsibility to convert
// as part of preparing the "final value".
t.Errorf("wrong value for ctx.SetRootModuleArgument\ngot: %#v\nwant: %#v", got, want)
}
})
}
// fakeHCLExpressionFunc is a fake implementation of hcl.Expression that just
// directly produces a value with direct Go code.
//
// An expression of this type has no references and so it cannot access any
// variables from the EvalContext unless something else arranges for them
// to be guaranteed available. For example, custom variable validations just
// unconditionally have access to the variable they are validating regardless
// of references.
type fakeHCLExpressionFunc func(*hcl.EvalContext) (cty.Value, hcl.Diagnostics)
var _ hcl.Expression = fakeHCLExpressionFunc(nil)
func (f fakeHCLExpressionFunc) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
return f(ctx)
}
func (f fakeHCLExpressionFunc) Variables() []hcl.Traversal {
return nil
}
func (f fakeHCLExpressionFunc) Range() hcl.Range {
return hcl.Range{
Filename: "fake",
Start: hcl.InitialPos,
End: hcl.InitialPos,
}
core: Handle root and child module input variables consistently Previously we had a significant discrepancy between these two situations: we wrote the raw root module variables directly into the EvalContext and then applied type conversions only at expression evaluation time, while for child modules we converted and validated the values while visiting the variable graph node and wrote only the _final_ value into the EvalContext. This confusion seems to have been the root cause for #29899, where validation rules for root module variables were being applied at the wrong point in the process, prior to type conversion. To fix that bug and also make similar mistakes less likely in the future, I've made the root module variable handling more like the child module variable handling in the following ways: - The "raw value" (exactly as given by the user) lives only in the graph node representing the variable, which mirrors how the _expression_ for a child module variable lives in its graph node. This means that the flow for the two is the same except that there's no expression evaluation step for root module variables, because they arrive as constant values from the caller. - The set of variable values in the EvalContext is always only "final" values, after type conversion is complete. That in turn means we no longer need to do "just in time" conversion in evaluationStateData.GetInputVariable, and can just return the value exactly as stored, which is consistent with how we handle all other references between objects. This diff is noisier than I'd like because of how much it takes to wire a new argument (the raw variable values) through to the plan graph builder, but those changes are pretty mechanical and the interesting logic lives inside the plan graph builder itself, in NodeRootVariable, and the shared helper functions in eval_variable.go. While here I also took the opportunity to fix a historical API wart in EvalContext, where SetModuleCallArguments was built to take a set of variable values all at once but our current caller always calls with only one at a time. That is now just SetModuleCallArgument singular, to match with the new SetRootModuleArgument to deal with root module variables.
2021-11-10 19:29:45 -06:00
}
core: Handle root and child module input variables consistently Previously we had a significant discrepancy between these two situations: we wrote the raw root module variables directly into the EvalContext and then applied type conversions only at expression evaluation time, while for child modules we converted and validated the values while visiting the variable graph node and wrote only the _final_ value into the EvalContext. This confusion seems to have been the root cause for #29899, where validation rules for root module variables were being applied at the wrong point in the process, prior to type conversion. To fix that bug and also make similar mistakes less likely in the future, I've made the root module variable handling more like the child module variable handling in the following ways: - The "raw value" (exactly as given by the user) lives only in the graph node representing the variable, which mirrors how the _expression_ for a child module variable lives in its graph node. This means that the flow for the two is the same except that there's no expression evaluation step for root module variables, because they arrive as constant values from the caller. - The set of variable values in the EvalContext is always only "final" values, after type conversion is complete. That in turn means we no longer need to do "just in time" conversion in evaluationStateData.GetInputVariable, and can just return the value exactly as stored, which is consistent with how we handle all other references between objects. This diff is noisier than I'd like because of how much it takes to wire a new argument (the raw variable values) through to the plan graph builder, but those changes are pretty mechanical and the interesting logic lives inside the plan graph builder itself, in NodeRootVariable, and the shared helper functions in eval_variable.go. While here I also took the opportunity to fix a historical API wart in EvalContext, where SetModuleCallArguments was built to take a set of variable values all at once but our current caller always calls with only one at a time. That is now just SetModuleCallArgument singular, to match with the new SetRootModuleArgument to deal with root module variables.
2021-11-10 19:29:45 -06:00
func (f fakeHCLExpressionFunc) StartRange() hcl.Range {
return f.Range()
}