opentofu/terraform/node_data_refresh.go

221 lines
6.5 KiB
Go
Raw Normal View History

package terraform
import (
"github.com/hashicorp/terraform/dag"
"github.com/hashicorp/terraform/plans"
"github.com/hashicorp/terraform/providers"
"github.com/hashicorp/terraform/states"
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
"github.com/hashicorp/terraform/tfdiags"
"github.com/zclconf/go-cty/cty"
)
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
// NodeRefreshableDataResource represents a resource that is "refreshable".
type NodeRefreshableDataResource struct {
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
*NodeAbstractResource
}
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
var (
_ GraphNodeSubPath = (*NodeRefreshableDataResource)(nil)
_ GraphNodeDynamicExpandable = (*NodeRefreshableDataResource)(nil)
_ GraphNodeReferenceable = (*NodeRefreshableDataResource)(nil)
_ GraphNodeReferencer = (*NodeRefreshableDataResource)(nil)
_ GraphNodeResource = (*NodeRefreshableDataResource)(nil)
_ GraphNodeAttachResourceConfig = (*NodeRefreshableDataResource)(nil)
)
// GraphNodeDynamicExpandable
func (n *NodeRefreshableDataResource) DynamicExpand(ctx EvalContext) (*Graph, error) {
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
var diags tfdiags.Diagnostics
count, countDiags := evaluateResourceCountExpression(n.Config.Count, ctx)
diags = diags.Append(countDiags)
if countDiags.HasErrors() {
return nil, diags.Err()
}
// Next we need to potentially rename an instance address in the state
// if we're transitioning whether "count" is set at all.
fixResourceCountSetTransition(ctx, n.ResourceAddr(), count != -1)
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
// Our graph transformers require access to the full state, so we'll
// temporarily lock it while we work on this.
state := ctx.State().Lock()
defer ctx.State().Unlock()
// The concrete resource factory we'll use
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
concreteResource := func(a *NodeAbstractResourceInstance) dag.Vertex {
// Add the config and state since we don't do that via transforms
a.Config = n.Config
a.ResolvedProvider = n.ResolvedProvider
return &NodeRefreshableDataResourceInstance{
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
NodeAbstractResourceInstance: a,
}
}
core: New refresh graph building behaviour Currently, the refresh graph uses the resources from state as a base, with data sources then layered on. Config is not consulted for resources and hence new resources that are added with count (or any new resource from config, for that matter) do not get added to the graph during refresh. This is leading to issues with scale in and scale out when the same value for count is used in both resources, and data sources that may depend on that resource (and possibly vice versa). While the resources exist in config and can be used, the fact that ConfigTransformer for resources is missing means that they don't get added into the graph, leading to "index out of range" errors and what not. Further to that, if we add these new resources to the graph for scale out, considerations need to be taken for scale in as well, which are not being caught 100% by the current implementation of NodeRefreshableDataResource. Scale-in resources should be treated as orphans, which according to the instance-form NodeRefreshableResource node, should be NodeDestroyableDataResource nodes, but this this logic is currently not rolled into NodeRefreshableDataResource. This causes issues on scale-in in the form of race-ish "index out of range" errors again. This commit updates the refresh graph so that StateTransformer is no longer used as the base of the graph. Instead, we add resources from the state and config in a hybrid fashion: * First off, resource nodes are added from config, but only if resources currently exist in state. NodeRefreshableManagedResource is a new expandable resource node that will expand count and add orphans from state. Any count-expanded node that has config but no state is also transformed into a plannable resource, via a new ResourceRefreshPlannableTransformer. * The NodeRefreshableDataResource node type will now add count orphans as NodeDestroyableDataResource nodes. This achieves the same effect as if the data sources were added by StateTransformer, but ensures there are no races in the dependency chain, with the added benefit of directing these nodes straight to the proper NodeDestroyableDataResource node. * Finally, config orphans (nodes that don't exist in config anymore period) are then added, to complete the graph. This should ensure as much as possible that there is a refresh graph that best represents both the current state and config with updated variables and counts.
2017-04-30 01:07:01 -05:00
// We also need a destroyable resource for orphans that are a result of a
// scaled-in count.
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
concreteResourceDestroyable := func(a *NodeAbstractResourceInstance) dag.Vertex {
core: New refresh graph building behaviour Currently, the refresh graph uses the resources from state as a base, with data sources then layered on. Config is not consulted for resources and hence new resources that are added with count (or any new resource from config, for that matter) do not get added to the graph during refresh. This is leading to issues with scale in and scale out when the same value for count is used in both resources, and data sources that may depend on that resource (and possibly vice versa). While the resources exist in config and can be used, the fact that ConfigTransformer for resources is missing means that they don't get added into the graph, leading to "index out of range" errors and what not. Further to that, if we add these new resources to the graph for scale out, considerations need to be taken for scale in as well, which are not being caught 100% by the current implementation of NodeRefreshableDataResource. Scale-in resources should be treated as orphans, which according to the instance-form NodeRefreshableResource node, should be NodeDestroyableDataResource nodes, but this this logic is currently not rolled into NodeRefreshableDataResource. This causes issues on scale-in in the form of race-ish "index out of range" errors again. This commit updates the refresh graph so that StateTransformer is no longer used as the base of the graph. Instead, we add resources from the state and config in a hybrid fashion: * First off, resource nodes are added from config, but only if resources currently exist in state. NodeRefreshableManagedResource is a new expandable resource node that will expand count and add orphans from state. Any count-expanded node that has config but no state is also transformed into a plannable resource, via a new ResourceRefreshPlannableTransformer. * The NodeRefreshableDataResource node type will now add count orphans as NodeDestroyableDataResource nodes. This achieves the same effect as if the data sources were added by StateTransformer, but ensures there are no races in the dependency chain, with the added benefit of directing these nodes straight to the proper NodeDestroyableDataResource node. * Finally, config orphans (nodes that don't exist in config anymore period) are then added, to complete the graph. This should ensure as much as possible that there is a refresh graph that best represents both the current state and config with updated variables and counts.
2017-04-30 01:07:01 -05:00
// Add the config since we don't do that via transforms
a.Config = n.Config
return &NodeDestroyableDataResource{
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
NodeAbstractResourceInstance: a,
core: New refresh graph building behaviour Currently, the refresh graph uses the resources from state as a base, with data sources then layered on. Config is not consulted for resources and hence new resources that are added with count (or any new resource from config, for that matter) do not get added to the graph during refresh. This is leading to issues with scale in and scale out when the same value for count is used in both resources, and data sources that may depend on that resource (and possibly vice versa). While the resources exist in config and can be used, the fact that ConfigTransformer for resources is missing means that they don't get added into the graph, leading to "index out of range" errors and what not. Further to that, if we add these new resources to the graph for scale out, considerations need to be taken for scale in as well, which are not being caught 100% by the current implementation of NodeRefreshableDataResource. Scale-in resources should be treated as orphans, which according to the instance-form NodeRefreshableResource node, should be NodeDestroyableDataResource nodes, but this this logic is currently not rolled into NodeRefreshableDataResource. This causes issues on scale-in in the form of race-ish "index out of range" errors again. This commit updates the refresh graph so that StateTransformer is no longer used as the base of the graph. Instead, we add resources from the state and config in a hybrid fashion: * First off, resource nodes are added from config, but only if resources currently exist in state. NodeRefreshableManagedResource is a new expandable resource node that will expand count and add orphans from state. Any count-expanded node that has config but no state is also transformed into a plannable resource, via a new ResourceRefreshPlannableTransformer. * The NodeRefreshableDataResource node type will now add count orphans as NodeDestroyableDataResource nodes. This achieves the same effect as if the data sources were added by StateTransformer, but ensures there are no races in the dependency chain, with the added benefit of directing these nodes straight to the proper NodeDestroyableDataResource node. * Finally, config orphans (nodes that don't exist in config anymore period) are then added, to complete the graph. This should ensure as much as possible that there is a refresh graph that best represents both the current state and config with updated variables and counts.
2017-04-30 01:07:01 -05:00
}
}
// Start creating the steps
steps := []GraphTransformer{
// Expand the count.
&ResourceCountTransformer{
Concrete: concreteResource,
Schema: n.Schema,
Count: count,
Addr: n.ResourceAddr(),
},
core: New refresh graph building behaviour Currently, the refresh graph uses the resources from state as a base, with data sources then layered on. Config is not consulted for resources and hence new resources that are added with count (or any new resource from config, for that matter) do not get added to the graph during refresh. This is leading to issues with scale in and scale out when the same value for count is used in both resources, and data sources that may depend on that resource (and possibly vice versa). While the resources exist in config and can be used, the fact that ConfigTransformer for resources is missing means that they don't get added into the graph, leading to "index out of range" errors and what not. Further to that, if we add these new resources to the graph for scale out, considerations need to be taken for scale in as well, which are not being caught 100% by the current implementation of NodeRefreshableDataResource. Scale-in resources should be treated as orphans, which according to the instance-form NodeRefreshableResource node, should be NodeDestroyableDataResource nodes, but this this logic is currently not rolled into NodeRefreshableDataResource. This causes issues on scale-in in the form of race-ish "index out of range" errors again. This commit updates the refresh graph so that StateTransformer is no longer used as the base of the graph. Instead, we add resources from the state and config in a hybrid fashion: * First off, resource nodes are added from config, but only if resources currently exist in state. NodeRefreshableManagedResource is a new expandable resource node that will expand count and add orphans from state. Any count-expanded node that has config but no state is also transformed into a plannable resource, via a new ResourceRefreshPlannableTransformer. * The NodeRefreshableDataResource node type will now add count orphans as NodeDestroyableDataResource nodes. This achieves the same effect as if the data sources were added by StateTransformer, but ensures there are no races in the dependency chain, with the added benefit of directing these nodes straight to the proper NodeDestroyableDataResource node. * Finally, config orphans (nodes that don't exist in config anymore period) are then added, to complete the graph. This should ensure as much as possible that there is a refresh graph that best represents both the current state and config with updated variables and counts.
2017-04-30 01:07:01 -05:00
// Add the count orphans. As these are orphaned refresh nodes, we add them
// directly as NodeDestroyableDataResource.
&OrphanResourceCountTransformer{
Concrete: concreteResourceDestroyable,
Count: count,
Addr: n.ResourceAddr(),
State: state,
},
// Attach the state
&AttachStateTransformer{State: state},
// Targeting
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
&TargetsTransformer{Targets: n.Targets},
// Connect references so ordering is correct
&ReferenceTransformer{},
// Make sure there is a single root
&RootTransformer{},
}
// Build the graph
b := &BasicGraphBuilder{
Steps: steps,
Validate: true,
Name: "NodeRefreshableDataResource",
}
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
graph, diags := b.Build(ctx.Path())
return graph, diags.ErrWithWarnings()
}
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
// NodeRefreshableDataResourceInstance represents a single resource instance
// that is refreshable.
type NodeRefreshableDataResourceInstance struct {
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
*NodeAbstractResourceInstance
}
// GraphNodeEvalable
func (n *NodeRefreshableDataResourceInstance) EvalTree() EvalNode {
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
addr := n.ResourceInstanceAddr()
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
// These variables are the state for the eval sequence below, and are
// updated through pointers.
var provider providers.Interface
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
var providerSchema *ProviderSchema
var change *plans.ResourceInstanceChange
var state *states.ResourceInstanceObject
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
var configVal cty.Value
return &EvalSequence{
Nodes: []EvalNode{
&EvalGetProvider{
Addr: n.ResolvedProvider,
Output: &provider,
Schema: &providerSchema,
},
// Always destroy the existing state first, since we must
// make sure that values from a previous read will not
// get interpolated if we end up needing to defer our
// loading until apply time.
&EvalWriteState{
Addr: addr.Resource,
ProviderAddr: n.ResolvedProvider,
State: &state, // a pointer to nil, here
ProviderSchema: &providerSchema,
terraform: ugly huge change to weave in new HCL2-oriented types Due to how deeply the configuration types go into Terraform Core, there isn't a great way to switch out to HCL2 gradually. As a consequence, this huge commit gets us from the old state to a _compilable_ new state, but does not yet attempt to fix any tests and has a number of known missing parts and bugs. We will continue to iterate on this in forthcoming commits, heading back towards passing tests and making Terraform fully-functional again. The three main goals here are: - Use the configuration models from the "configs" package instead of the older models in the "config" package, which is now deprecated and preserved only to help us write our migration tool. - Do expression inspection and evaluation using the functionality of the new "lang" package, instead of the Interpolator type and related functionality in the main "terraform" package. - Represent addresses of various objects using types in the addrs package, rather than hand-constructed strings. This is not critical to support the above, but was a big help during the implementation of these other points since it made it much more explicit what kind of address is expected in each context. Since our new packages are built to accommodate some future planned features that are not yet implemented (e.g. the "for_each" argument on resources, "count"/"for_each" on modules), and since there's still a fair amount of functionality still using old-style APIs, there is a moderate amount of shimming here to connect new assumptions with old, hopefully in a way that makes it easier to find and eliminate these shims later. I apologize in advance to the person who inevitably just found this huge commit while spelunking through the commit history.
2018-04-30 12:33:53 -05:00
},
&EvalIf{
If: func(ctx EvalContext) (bool, error) {
// If the config explicitly has a depends_on for this
// data source, assume the intention is to prevent
// refreshing ahead of that dependency, and therefore
// we need to deal with this resource during the apply
// phase..
if len(n.Config.DependsOn) > 0 {
return true, EvalEarlyExitError{}
}
return true, nil
},
Then: EvalNoop{},
},
// EvalReadData will _attempt_ to read the data source, but may
// generate an incomplete planned object if the configuration
// includes values that won't be known until apply.
&EvalReadData{
Addr: addr.Resource,
Config: n.Config,
Dependencies: n.StateReferences(),
Provider: &provider,
ProviderAddr: n.ResolvedProvider,
ProviderSchema: &providerSchema,
OutputChange: &change,
OutputConfigValue: &configVal,
OutputState: &state,
},
&EvalIf{
If: func(ctx EvalContext) (bool, error) {
return (*state).Status != states.ObjectPlanned, nil
},
Then: &EvalSequence{
Nodes: []EvalNode{
&EvalWriteState{
Addr: addr.Resource,
ProviderAddr: n.ResolvedProvider,
State: &state,
ProviderSchema: &providerSchema,
},
&EvalUpdateStateHook{},
},
},
Else: &EvalSequence{
// We can't deal with this yet, so we'll repeat this step
// during the plan walk to produce a planned change to read
// this during the apply walk. However, we do still need to
// save the generated change and partial state so that
// results from it can be included in other data resources
// or provider configurations during the refresh walk.
// (The planned object we save in the state here will be
// pruned out at the end of the refresh walk, returning
// it back to being unset again for subsequent walks.)
Nodes: []EvalNode{
&EvalWriteDiff{
Addr: addr.Resource,
Change: &change,
ProviderSchema: &providerSchema,
},
&EvalWriteState{
Addr: addr.Resource,
ProviderAddr: n.ResolvedProvider,
State: &state,
ProviderSchema: &providerSchema,
},
},
},
},
},
}
}