stringer has changed the boilerplate it generates in a recent version.
We'd previously updated to the new format but accientally rolled back
to the old while merging a long-running feature branch.
This restores us back to the new format again.
Moving the transformer wholesale looks like it broke some tests, with
some actually doing legit work in normalizing singular resources from a
foo.0 notation to just foo.
Adjusted the TestPlanGraphBuilder to account for the extra
meta.count-boundary nodes in the graph output now, as well as added
another context test that tests this case. It appears the issue happens
during validate, as this is where the state can be altered to a broken
state if things are not properly transformed in the plan graph.
This fixes interpolation issues on grandchild data sources that have
multiple instances (ie: counts). For example, baz depends on bar, which
depends on foo.
In this instance, after an initial TF run is done and state is saved,
the next refresh/plan is not properly transformed, and instead of the
graph/state coming through as data.x.bar.0, it comes through as
data.x.bar. This breaks interpolations that rely on splat operators -
ie: data.x.bar.*.out.
* Revert #11245, #11321, #11498 and #11757
These PR’s are all related to issue #11170 for which I would like to propose a different solution then the one currently implemented.
* A different approach to solve #11170
This approach has (IMHO) a few advantages with regards to the solution currently implemented. I will elaborate on this in the PR.
The documentation for Refresh indicates that it will always return a
valid state, but that wasn't true in the case of a graph builder error.
While this same concept wasn't documented for Apply, it was still
assumed in the terraform apply code.
Since the helper testing framework relies on the absence of a state to
determine if it can call Destroy, the Context can't can't start
returning a state in all cases. Document this, and use the State method
to fetch the correct state value after Apply.
Add a nil check to the WriteState function, so that writing a nil state
is a noop.
Make sure to init before sorting the state, to make sure we're not
attempting to sort nil values. This isn't technically needed with the
current code, but it's just safer in general.
Make sure duplicate depends_on entries are pruned from existing states
on read.
Make sure new state built from configs with multiple references to the
same resource only add it once to the Dependencies.
duplicate entries could end up in "depends_on" in the state, which could
possible lead to erroneous state comparisons. Remove them when walking
the graph, and remove existing duplicates when pruning the state.
Previously this function was depending on the mapstructure behavior of
failing with an error when trying to decode a map into a list or
vice-versa, but mapstructure's WeakDecode behavior changed so that it
will go to greater lengths to coerce the given value to fit into the
target type, causing us to mis-handle certain ambigous cases.
Here we exert a bit more control over what's going on by using 'reflect'
to first check whether we have a slice or map value and only then try
to decode into one with mapstructure. This allows us to still rely on
mapstructure's ability to decode nested structures but ensure that lists
and maps never get implicitly converted to each other.
Since the validation of connection blocks is delegated to the communicator
selected by "type", we were not previously doing any validation of the
attribute names in these blocks until running provisioners during apply.
Proper validation here requires us to already have the instance state,
since the final connection info is a merge of values provided in config
with values assigned automatically by the resource. However, we can do
some basic name validation to catch typos during the validation pass, even
though semantic validation and checking for missing attributes will still
wait until the provisioner is instantiated.
This fixes#6582 as much as we reasonably can.
This previously lacked tests altogether. This new test verifies the
"happy path", ensuring that both literal and computed values pass through
correctly into the VariableValues map.
This crash resulted because the type switch checked for either of two
types but the type assertion within it assumed only one of them.
A straightforward (if inelegant) fix is to simply duplicate the relevant
case block and change the type assertion, thus allowing the types to match
up in all cases.
This fixes#13297.
During the input walk we stash the values resulting from user input
(if any) in the eval context for use when later walks need to resolve
the provider config.
However, this repository of input results is only able to represent
literal values, since it does not retain the record of which of the keys
have values that are "computed".
Previously we were blindly stashing all of the results, failing to
consider that some of them might be computed. That resulted in the
UnknownValue placeholder being misinterpreted as a literal value when
the data is used later, which ultimately resulted in it clobbering the
actual expression evaluation result and thus causing the provider to
fail to configure itself.
Now we are careful to only retain in this repository the keys whose values
are known statically during the input phase. This eventually gets merged
with the dynamic evaluation results on subsequent walks, with the dynamic
keys left untouched due to their absence from the stored input map.
This fixes#11264.
This method mirrors that of config.Backend, so we can compare the
configration of a backend read from a config vs that of a backend read
from a state. This will prevent init from reinitializing when using
`-backend-config` options that match the existing state.
golang/tools commit 23ca8a263 changed the format of the leading comment
to comply with some new standards discussed here:
https://golang.org/issue/13560
This is the result of running generate with the latest version of
stringer. Everyone working on Terraform will need to update stringer
after this is merged, to avoid reverting this:
go get -u golang.org/x/tools/cmd/stringer
It appears there are no tests for this as far as I can find.
We change V1 states (very old) to assume a nil path is a root path.
Staet.Validate() later will catch any duplicate paths.
When transforming a diff from DestroyCreate to a simple Update,
ignore_changes can cause keys from flatmapped objects to be filtered
form the diff. We need to filter each flatmapped container as a whole to
ensure that unchanged keys aren't lost in the update.
ignore_changes is causing changes in other flatmapped sets to be
filtered out incorrectly.
This required fixing the testDiffFn to create diffs which include the
old value, breaking one other test.
Fixes#12836
Realistically, these should be caught during validation anyways. In this
case, this was causing 12386 because refresh with a data source will
attempt to use module variables. I don't see any clear logic to prune
those module variables or not add them so its easier to return unknown
to cause the data to be computed and not run.
the terraform package doesn't know about TestProvider, so don't put the
hooks in terraform.MockResourceProvider. Wrap the mock in the test where
we need to check the TestProvider functionality.
Always wait for watchStop to return during context.walk.
Context.walk would often complete immediately after sending the close
signal to watchStop, which would in turn call the deferred releaseRun
cancelling the runContext.
Without any synchronization points after the select statement in
watchStop, that goroutine was not guaranteed to be scheduled
immediately, and in fact it often didn't continue until after the
runContext was canceled. This in turn left the select statement with
multiple successful cases, and half the time it would chose to Stop the
providers.
Stopping the providers after the walk of course didn't cause any
immediate failures, but if there was another walk performed, the
provider StopContext would no longer be valid and could cause
cancellation errors in the provider.
Starting with Go 1.8 betas, we've periodically received SIGQUITs on our
tests in Travis. The stack trace looks like this:
https://gist.github.com/mitchellh/abf09b0980f8ea01269f8d9d6133884d
The tests are timing out! This is a test that hasn't been touched really
in a very long time and has always passed. I've **reproduced this
locally** by setting `GOMAXPROCS=1` and running the test. By yielding
the scheduler in the hot loop, it now passes almost instantly every
time.
Perhaps the test can be written in a different way, but this gets tests
passing and I think will fix our periodic errors.
A couple interpolation tests were using invalid state that didn't match
the config. These will still pass but were flushed out by an attempt to
make this an error. The repl however still required interpolation
without a config, and tests there will provide a indication if this
behavior changes.
It turns out that a few use cases depend on not finding a resource
without an error.
The other code paths had sufficient nil checks for this, but there was
one place where we called Count() that needed to be checked. If the
existence of the resource matters, it would be caught at a higher level
and still return an "unknown resource" error to the user.
Module resource were being sorted lexically by name by the state filter.
If there are 10 or more resources, the order won't match the index
order, and resources will have different indexes in their new location.
Sort the FilterResults by index numerically when the names match.
Clean up the module String output for visual inspection by sorting
Resource name parts numerically when they are an integer value.
Due to the change to `interface{}` we need to use `reflect.DeepEqual`
here. With the restriction of primitive types this should always be
safe. We'll never get functions, channels, etc.
This changes the type of values in Meta for InstanceState to
`interface{}`. They were `string` before.
This will allow richer structures to be persisted to this without
flatmapping them (down with flatmap!). The documentation clearly states
that only primitives/collections are allowed here.
The only thing using this was helper/schema for schema versioning.
Appropriate type checking was added to make this change safe.
The timeout work @catsby is doing will use this for a richer structure.
Fixes#12183
The fix is in flatmap for this but the entire issue is a bit more
complex. Given a schema with a computed set, if you reference it like
this:
lookup(attr[0], "field")
And "attr" contains a computed set within it, it would panic even though
"field" is available. There were a couple avenues I could've taken to
fix this:
1.) Any complex value containing any unknown value at any point is
entirely unknown.
2.) Only the specific part of the complex value is unknown.
I took route 2 so that the above works without any computed (since
"name" is not computed but something else is). This may actually have an
effect on other parts of Terraform configs, however those similar
configs would've simply crashed previously so it shouldn't break any
pre-existing configs.
Fixes#10911
Outputs that aren't targeted shouldn't be included in the graph.
This requires passing targets to the apply graph. This is unfortunate
but long term should be removable since I'd like to move output changes
to the diff as well.
During backend initialization, especially during a migration, there is a
chance that an existing state could be overwritten.
Attempt to get a locks when writing the new state. It would be nice to
always have a lock when reading the states, but the recursive structure
of the Meta.Backend config functions makes that quite complex.
Fixes#11749
I'm **really** surprised this didn't come up earlier.
When only the state is available for a node, the advertised
referenceable name (the name used for dependency connections) included
the module path. This module path is automatically prepended to the
name. This means that probably every non-root resource for state-only
operations (destroys) didn't order properly.
This fixes that by omitting the path properly.
Multiple tests added to verify both graph correctness as well as a
higher level context test.
Will backport to 0.8.x
To avoid chasing down issues like #11635 I'm proposing we disable the
shadow graph for end users now that we have merged in all the new
graphs. I've kept it around and default-on for tests so that we can use
it to test new features as we build them. I think it'll still have value
going forward but I don't want to hold us for making it work 100% with
all of Terraform at all times.
I propose backporting this to 0-8-stable, too.
Fixes#11349
I tracked this bug back to the early 0.7 days so this has been around a
really long time. I wanted to confirm that this wasn't introduced by any
new graph changes and it appears to predate all of that. I couldn't find
a single 0.7.x release where this worked, and I didn't want to go back
to 0.6.x since it was pre-vendoring.
The test case shows the logic the best, but the basic idea is: for
collections that go to zero elements, the "RequiresNew" sameness check
should be ignored, since the new diff can choose to not have that at all
in the diff.
This adds a Meta field (similar to InstanceState.Meta) to InstanceDiff.
This allows providers to store arbitrary k/v data as part of a diff and
have it persist through to the Apply. This will be used by helper/schema
for timeout storage being done by @catsby.
The type here is `map[string]interface{}`. A couple notes:
* **Not using `string`**: The Meta field of InstanceState is a string
value. We've learned that forcing things to strings is bad. Let's
just allow types.
* **Primitives only**: Even though it is type `interface{}`, it must
be able to cleanly pass the go-plugin RPC barrier as well as be
encoded to a file as Gob. Given these constraints, the value must
only comprise of primitive types and collections. No structs,
functions, channels, etc.
Read state would assume that having a reader meant there should be a
valid state. Check for an empty file and return ErrNoState to
differentiate a bad file from an empty one.
This disables the computed value check for `count` during the validation
pass. This enables partial support for #3888 or #1497: as long as the
value is non-computed during the plan, complex values will work in
counts.
**Notably, this allows data source values to be present in counts!**
The "count" value can be disabled during validation safely because we
can treat it as if any field that uses `count.index` is computed for
validation. We then validate a single instance (as if `count = 1`) just
to make sure all required fields are set.