This is a mostly mechanical refactor with a handful of changes which
are necessary due to the semantic difference between earlyconfig and
configs.
When parsing root and descendant modules in the module installer, we now
check the core version requirements inline. If the Terraform version is
incompatible, we drop any other module loader diagnostics. This ensures
that future language additions don't clutter the output and confuse the
user.
We also add two new checks during the module load process:
* Don't try to load a module with a `nil` source address. This is a
necessary change due to the move away from earlyconfig.
* Don't try to load a module with a blank name (i.e. `module ""`).
Because our module loading manifest uses the stringified module path
as its map key, this causes a collision with the root module, and a
later panic. This is the bug which triggered this refactor in the
first place.
As explained by the deleted comments, this package was used to identify situations where the `terraform 0.12upgrade` command can help migrate 0.11 syntax. Current versions of terraform don't include this command, and it's not likely that users are attempting upgrades from 0.11 to 1.4+
The replacement init swaps the order of the module and backend initialization in order to prepare for the next commit.
Config initialization now takes the following approach:
1. Load the root module, but withhold diagnostic errors until after version check
2. Initialize the backend, but withhold diagnostic errors until after version check
3. Get modules
4. Load all config (root and modules)
5. Check terraform version requirements (this can be defined by nested modules) and display any errors. It's important to show these first because prior errors could be the result of a newer terraform version syntax
6. Finally, show any errors related to backed init or config loading
We originally introduced the idea of language experiments as a way to get
early feedback on not-yet-proven feature ideas, ideally as part of the
initial exploration of the solution space rather than only after a
solution has become relatively clear.
Unfortunately, our tradeoff of making them available in normal releases
behind an explicit opt-in in order to make it easier to participate in the
feedback process had the unintended side-effect of making it feel okay
to use experiments in production and endure the warnings they generate.
This in turn has made us reluctant to make use of the experiments feature
lest experiments become de-facto production features which we then feel
compelled to preserve even though we aren't yet ready to graduate them
to stable features.
In an attempt to tweak that compromise, here we make the availability of
experiments _at all_ a build-time flag which will not be set by default,
and therefore experiments will not be available in most release builds.
The intent (not yet implemented in this PR) is for our release process to
set this flag only when it knows it's building an alpha release or a
development snapshot not destined for release at all, which will therefore
allow us to still use the alpha releases as a vehicle for giving feedback
participants access to a feature (without needing to install a Go
toolchain) but will not encourage pretending that these features are
production-ready before they graduate from experimental.
Only language experiments have an explicit framework for dealing with them
which outlives any particular experiment, so most of the changes here are
to that generalized mechanism. However, the intent is that non-language
experiments, such as experimental CLI commands, would also in future
check Meta.AllowExperimentalFeatures and gate the use of those experiments
too, so that we can be consistent that experimental features will never
be available unless you explicitly choose to use an alpha release or
a custom build from source code.
Since there are already some experiments active at the time of this commit
which were not previously subject to this restriction, we'll pragmatically
leave those as exceptions that will remain generally available for now,
and so this new approach will apply only to new experiments started in the
future. Once those experiments have all concluded, we will be left with
no more exceptions unless we explicitly choose to make an exception for
some reason we've not imagined yet.
It's important that we be able to write tests that rely on experiments
either being available or not being available, so here we're using our
typical approach of making "package main" deal with the global setting
that applies to Terraform CLI executables while making the layers below
all support fine-grain selection of this behavior so that tests with
different needs can run concurrently without trampling on one another.
As a compromise, the integration tests in the terraform package will
run with experiments enabled _by default_ since we commonly need to
exercise experiments in those tests, but they can selectively opt-out
if they need to by overriding the loader setting back to false again.
Error diags from c.installModules() no longer cause getModules() to exit early.
Whether installModules completed successfully, errored, or was cancelled, we
try to update the manifest as best we can, preferring incomplete information
to none.
Earlier work to make "terraform init" interruptible made the getproviders
package context-aware in order to allow provider installation to be cancelled.
Here we make a similar change for module installation, which is now also
cancellable with SIGINT. This involves plumbing context through initwd and
getmodules. Functions which can make network requests now include a context
parameter whose cancellation cancels those requests.
Since the module installation code is shared, "terraform get" is now
also interruptible during module installation.
This is a replacement declaration for using Terraform Cloud as a remote
backend, leaving the literal backend as an implementation detail and not
a user-level concept.
Thus far our various interactions with the bits of state we keep
associated with a working directory have all been implemented directly
inside the "command" package -- often in the huge command.Meta type -- and
not managed collectively via a single component.
There's too many little codepaths reading and writing from the working
directory and data directory to refactor it all in one step, but this is
an attempt at a first step towards a future where everything that reads
and writes from the current working directory would do so via an object
that encapsulates the implementation details and offers a high-level API
to read and write all of these session-persistent settings.
The design here continues our gradual path towards using a dependency
injection style where "package main" is solely responsible for directly
interacting with the OS command line, the OS environment, the OS working
directory, the stdio streams, and the CLI configuration, and then
communicating the resulting information to the rest of Terraform by wiring
together objects. It seems likely that eventually we'll have enough wiring
code in package main to justify a more explicit organization of that code,
but for this commit the new "workdir.Dir" object is just wired directly in
place of its predecessors, without any significant change of code
organization at that top layer.
This first commit focuses on the main files and directories we use to
find provider plugins, because a subsequent commit will lightly reorganize
the separation of concerns for plugin launching with a similar goal of
collecting all of the relevant logic together into one spot.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.