If an instance object in state has an earlier schema version number then
it is likely that the schema we're holding won't be able to decode the
raw data that is stored. Instead, we must ask the provider to upgrade it
for us first, which might also include translating it from flatmap form
if it was last updated with a Terraform version earlier than v0.12.
This ends up being a "seam" between our use of int64 for schema versions
in the providers package and uint64 everywhere else. We intend to
standardize on int64 everywhere eventually, but for now this remains
consistent with existing usage in each layer to keep the type conversion
noise contained here and avoid mass-updates to other Terraform components
at this time.
This also includes a minor change to the test helpers for the
backend/local package, which were inexplicably setting a SchemaVersion of
1 on the basic test state but setting the mock schema version to zero,
creating an invalid situation where the state would need to be downgraded.
It's possible that a computed collection could be handled by the
attribute name, rather than the index count value.
Use a new testDiffFn for some tests, which don't work with the old
function that can't determine `computed` without the schema.
Some mock objects will not have any mock behavior configured for the
GetSchema method, so we should just return a valid-but-empty schema in
that case, rather than panicking as we did before.
The only reasonable usage of these methods is for them to run concurrently
with other methods, so we mustn't hold a lock to do this work. For tests
that deal with stopping, it's the test's own responsibility to deal with
any concurrency issues that arise from their StopFns running concurrently
with other mock functions.
I misunderstood the logic here on the first pass of porting to the new
provider and state types: EvalUndeposeState is supposed to return the
deposed object back to being current again, so we can undo the deposing
in the case where the create leg fails.
If we don't do this, we end up leaving the instance with no current object
at all and with its prior object deposed, and then the later destroy
node deletes that deposed object, leaving the user with no object at all.
For safety we skip this restoration if there _is_ a new current object,
since a failed create can still produce a partial result which we need
to keep to avoid losing track of any remote objects that were successfully
created.
In the old protocol, returning a nil InstanceState was a way to indicate
that the object had been deleted. In the new world we signal that with
an actual object that contains a null value, which Terraform Core itself
will then recognize and turn into a nil state, eventually removing the
entry from state altogether.
This is a pretty basic attempt to turn a pair of values into an old-school
diff. It probably won't work correctly for all tests, but hopefully works
well enough that we can just update the remaining tests in-place to use
the new API directly.
Significant changes to the provider interface left a lot of the
tests in a non-buildable state. This set of changes gets the
tests building again but does not attempt to make them run to
completion or pass.
After this commit, it is possible to build a test program for
the ./terraform package but it will panic during its run. That
will be addressed in subsequent commits.
MockProvider and MockProvisioner implement the new plugin interfaces,
and are built following the patterns used by the legacy
MockResourceProvider and MockResourceProvisioner