This is a mostly mechanical refactor with a handful of changes which
are necessary due to the semantic difference between earlyconfig and
configs.
When parsing root and descendant modules in the module installer, we now
check the core version requirements inline. If the Terraform version is
incompatible, we drop any other module loader diagnostics. This ensures
that future language additions don't clutter the output and confuse the
user.
We also add two new checks during the module load process:
* Don't try to load a module with a `nil` source address. This is a
necessary change due to the move away from earlyconfig.
* Don't try to load a module with a blank name (i.e. `module ""`).
Because our module loading manifest uses the stringified module path
as its map key, this causes a collision with the root module, and a
later panic. This is the bug which triggered this refactor in the
first place.
Go 1.19's "fmt" has some awareness of the new doc comment formatting
conventions and adjusts the presentation of the source comments to make
it clearer how godoc would interpret them. Therefore this commit includes
various updates made by "go fmt" to acheve that.
In line with our usual convention that we make stylistic/grammar/spelling
tweaks typically only when we're "in the area" changing something else
anyway, I also took this opportunity to review most of the comments that
this updated to see if there were any other opportunities to improve them.
* Add golden JSON test for Terraform plan
* Add data source to golden JSON plan
* Move output comparison code into shared helper function
* Add note for maintainer to contact TFC when UI changes
UI changes may potentially impact the behavior of structured run output
on TFC.
* Add test_data_source to other mock providers
This commit replaces `ioutil.TempDir` with `t.TempDir` in tests. The
directory created by `t.TempDir` is automatically removed when the test
and all its subtests complete.
Prior to this commit, temporary directory created using `ioutil.TempDir`
needs to be removed manually by calling `os.RemoveAll`, which is omitted
in some tests. The error handling boilerplate e.g.
defer func() {
if err := os.RemoveAll(dir); err != nil {
t.Fatal(err)
}
}
is also tedious, but `t.TempDir` handles this for us nicely.
Reference: https://pkg.go.dev/testing#T.TempDir
Signed-off-by: Eng Zer Jun <engzerjun@gmail.com>
Earlier work to make "terraform init" interruptible made the getproviders
package context-aware in order to allow provider installation to be cancelled.
Here we make a similar change for module installation, which is now also
cancellable with SIGINT. This involves plumbing context through initwd and
getmodules. Functions which can make network requests now include a context
parameter whose cancellation cancels those requests.
Since the module installation code is shared, "terraform get" is now
also interruptible during module installation.
We introduced this experiment to gather feedback, and the feedback we saw
led to us deciding to do another round of design work before we move
forward with something to meet this use-case.
In addition to being experimental, this has only been included in alpha
releases so far, and so on both counts it is not protected by the
Terraform v1.0 Compatibility Promises.
In historical versions of Terraform the responsibility to check this was
inside the terraform.NewContext function, along with various other
assorted concerns that made that function particularly complicated.
More recently, we reduced the responsibility of the "terraform" package
only to instantiating particular named plugins, assuming that its caller
is responsible for selecting appropriate versions of any providers that
_are_ external. However, until this commit we were just assuming that
"terraform init" had correctly selected appropriate plugins and recorded
them in the lock file, and so nothing was dealing with the problem of
ensuring that there haven't been any changes to the lock file or config
since the most recent "terraform init" which would cause us to need to
re-evaluate those decisions.
Part of the game here is to slightly extend the role of the dependency
locks object to also carry information about a subset of provider
addresses whose lock entries we're intentionally disregarding as part of
the various little edge-case features we have for overridding providers:
dev_overrides, "unmanaged providers", and the testing overrides in our
own unit tests. This is an in-memory-only annotation, never included in
the serialized plan files on disk.
I had originally intended to create a new package to encapsulate all of
this plugin-selection logic, including both the version constraint
checking here and also the handling of the provider factory functions, but
as an interim step I've just made version constraint consistency checks
the responsibility of the backend/local package, which means that we'll
always catch problems as part of preparing for local operations, while
not imposing these additional checks on commands that _don't_ run local
operations, such as "terraform apply" when in remote operations mode.
Previously the planfile.Create function had accumulated probably already
too many positional arguments, and I'm intending to add another one in
a subsequent commit and so this is preparation to make the callsites more
readable (subjectively) and make it clearer how we can extend this
function's arguments to include further components in a plan file.
There's no difference in observable functionality here. This is just
passing the same set of arguments in a slightly different way.
Remove answers from testInputResponse as they are given, and raise an
error during cleanup if any answers remain unused.
This enables tests to ensure that the expected mock answers are actually
used in a test; previously, an entire branch of code including an input
sequence could be omitted and the test(s) would not fail.
The only test that had unused answers in this map is one leftover from
legacy state migrations, a prompt that was removed in
7c93b2e5e6
Thus far our various interactions with the bits of state we keep
associated with a working directory have all been implemented directly
inside the "command" package -- often in the huge command.Meta type -- and
not managed collectively via a single component.
There's too many little codepaths reading and writing from the working
directory and data directory to refactor it all in one step, but this is
an attempt at a first step towards a future where everything that reads
and writes from the current working directory would do so via an object
that encapsulates the implementation details and offers a high-level API
to read and write all of these session-persistent settings.
The design here continues our gradual path towards using a dependency
injection style where "package main" is solely responsible for directly
interacting with the OS command line, the OS environment, the OS working
directory, the stdio streams, and the CLI configuration, and then
communicating the resulting information to the rest of Terraform by wiring
together objects. It seems likely that eventually we'll have enough wiring
code in package main to justify a more explicit organization of that code,
but for this commit the new "workdir.Dir" object is just wired directly in
place of its predecessors, without any significant change of code
organization at that top layer.
This first commit focuses on the main files and directories we use to
find provider plugins, because a subsequent commit will lightly reorganize
the separation of concerns for plugin launching with a similar goal of
collecting all of the relevant logic together into one spot.
* command: new command, terraform add, generates resource templates
terraform add ADDRESS generates a resource configuration template with all required (and optionally optional) attributes set to null. This can optionally also pre-populate nonsesitive attributes with values from an existing resource of the same type in state (sensitive vals will be populated with null and a comment indicating sensitivity)
* website: terraform add documentation
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.