There is some additional, early validation on the "count" meta-argument
that verifies that only suitable variable types are used, and adding local
values to this whitelist was missed in the initial implementation.
The information stored in a plan is tightly coupled to the Terraform core
and provider plugins that were used to create it, since we have no
mechanism to "upgrade" a plan to reflect schema changes and so mismatching
versions are likely to lead to the "diffs didn't match during apply"
error.
To allow us to catch this early and return an error message that _doesn't_
say it's a bug in Terraform, we'll remember the Terraform version and
plugin binaries that created a particular plan and then require that
those match when loading the plan in order to apply it.
The planFormatVersion is increased here so that plan files produced by
earlier Terraform versions _without_ this information won't be accepted
by this new version, and also that older versions won't try to process
plans created by newer versions.
Rather than providing an already-resolved map of plugins to core, we now
provide a "provider resolver" which knows how to resolve a set of provider
dependencies, to be determined later, and produce that map.
This requires the context to be instantiated in a different way, so this
very noisy diff is a mostly-mechanical update of all of the existing
places where contexts get created for testing, using some adapted versions
of the pre-existing utilities for passing in mock providers.
Previously the Type of a ResourceState was generally ignored, but we're
now starting to use it to figure out which providers are needed to
support the resources in state so our tests need to set it accurately
in order to get the expected result.
Moving the transformer wholesale looks like it broke some tests, with
some actually doing legit work in normalizing singular resources from a
foo.0 notation to just foo.
Adjusted the TestPlanGraphBuilder to account for the extra
meta.count-boundary nodes in the graph output now, as well as added
another context test that tests this case. It appears the issue happens
during validate, as this is where the state can be altered to a broken
state if things are not properly transformed in the plan graph.
When transforming a diff from DestroyCreate to a simple Update,
ignore_changes can cause keys from flatmapped objects to be filtered
form the diff. We need to filter each flatmapped container as a whole to
ensure that unchanged keys aren't lost in the update.
ignore_changes is causing changes in other flatmapped sets to be
filtered out incorrectly.
This required fixing the testDiffFn to create diffs which include the
old value, breaking one other test.
Fixes#10711
The `ModuleVariablesTransformer` only adds module variables in use. This
was missing module variables used by providers since we ran the provider
too late. This moves the transformer and adds a test for this.
Fixes#10680
This moves TargetsTransformer to run after the transforms that add
module variables is run. This makes targeting work across modules (test
added).
This is a bug that only exists in the new graph, but was caught by a
shadow error in #10680. Tests were added to protect against regressions.
Fixes#8695
When a list count was computed in a multi-resource access
(foo.bar.*.list), we were returning the value as empty string. I don't
actually know the histocal reasoning for this but this can't be correct:
we must return unknown.
When changing this to unknown, the new tests passed and none of the old
tests failed. This leads me further to believe that the return empty
string is probably a holdover from long ago to just avoid crashes or
UUIDs in the plan output and not actually the correct behavior.
People with `uuid()` usage in their configurations would receive shadow
errors every time on plan because the UUID would change.
This is hacky fix but I also believe correct: if a shadow error contains
uuid() then we ignore the shadow error completely. This feels wrong but
I'll explain why it is likely right:
The "right" feeling solution is to create deterministic random output
across graph runs. This would require using math/rand and seeding it
with the same value each run. However, this alone probably won't work
due to Terraform's parallelism and potential to call uuid() in different
orders. In addition to this, you can't seed crypto/rand and its unlikely
that we'll NEVER use crypto/rand in the future even if we switched
uuid() to use math/rand.
Therefore, the solution is simple: if there is no shadow error, no
problem. If there is a shadow error and it contains uuid(), then ignore
it.
This will detect computed counts (which we don't currently support) and
change the error to be more informative that we don't allow computed
counts. Prior to this, the error would instead be something like
`strconv.ParseInt: "${var.foo}" cannot be parsed as int`.
Fixes#5342
The dynamically expanded subgraph wasn't being validated so cycles
weren't being caught here and Terraform would just hang. This fixes
that.
Note that it may make sense to validate higher level when the graph is
expanded but there are certain cases we actually expect the graph to
potentially be invalid, so this seems safer for now.
Fixes#5826
The `prevent_destroy` lifecycle configuration was not being checked when
the count was decreased for a resource with a count. It was only
checking when attributes changed on pre-existing resources.
This fixes that.
This is a requirement for the parallelism of Terraform to work sanely.
We could deep copy every result but I think this would be unrealistic
and impose a performance cost when it isn't necessary in most cases.
Fixes issue where a resource marked as tainted with no other attribute
diffs would never show up in the plan or apply as needing to be
replaced.
One unrelated test needed updating due to a quirk in the testDiffFn
logic - it adds a "type" field diff if the diff is non-Empty. NBD
When targeting, only Addressable untargeted nodes were being removed
from the graph. Variable nodes are not directly Addressable, so they
were hanging around. This caused problems with module variables that
referred to Resource nodes. The Resource node would be filtered out of
the graph, but the module Variable node would not, so it would try to
interpolate during the graph walk and be unable to find it's referent.
This would present itself as strange "cannot find variable" errors for
variables that were uninvolved with the currently targeted set of
resources.
Here, we introduce a new interface that can be implemented by graph
nodes to indicate they should be filtered out from targeting even though
they are not directly addressable themselves.
This is the first step in allowing overrides of map and list variables.
We convert Context.variables to map[string]interface{} from
map[string]string and fix up all the call sites.
The reproduction of issue #7421 involves a list of maps being passed to
a module, where one or more of the maps has a value which is computed
(for example, from another resource). There is a failure at the point of
use (via lookup interpolation) of the computed value of the form:
```
lookup: lookup failed to find 'elb' in:
${lookup(var.services[count.index], "elb")}
```
Where 'elb' is the key of the map.
Passing a literal map to a module looks like this in HCL:
module "foo" {
source = "./foo"
somemap {
somekey = "somevalue"
}
}
The HCL parser always wraps an extra list around the map, so we need to
remove that extra list wrapper when the parameter is indeed of type "map".
Fixes#7140
In #7170 we found two scenarios where the type checking done during the
`context.Validate()` graph walk was circumvented, and the subsequent
assumption of type safety in the provider's `Diff()` implementation
caused panics.
Both scenarios have to do with interpolations that reference Computed
values. The sentinel we use to indicate that a value is Computed does
not carry any type information with it yet.
That means that an incorrect reference to a list or a map in a string
attribute can "sneak through" validation only to crop up...
1. ...during Plan for Data Source References
2. ...during Apply for Resource references
In order to address this, we:
* add high-level tests for each of these two scenarios in `provider/test`
* add context-level tests for the same two scenarios in `terraform`
(these tests proved _really_ tricky to write!)
* place an `EvalValidateResource` just before `EvalDiff` and `EvalApply` to
catch these errors
* add some plumbing to `Plan()` and `Apply()` to return validation
errors, which were previously only generated during `Validate()`
* wrap unit-tests around `EvalValidateResource`
* add an `IgnoreWarnings` option to `EvalValidateResource` to prevent
active warnings from halting execution on the second-pass validation
Eventually, we might be able to attach type information to Computed
values, which would allow for these errors to be caught earlier. For
now, this solution keeps us safe from panics and raises the proper
errors to the user.
Fixes#7170
Previously the plan phase would produce a data diff only if no state was
already present. However, this is a faulty approach because a state will
already be present in the case where the data resource depends on a
managed resource that existed in state during refresh but became
computed during plan, due to a "forces new resource" diff.
Now we will produce a data diff regardless of the presence of the state
when the configuration is computed during the plan phase.
This fixes#6824.
cd0c452 contained a bug where the creation diff for a data resource was
put into a new local variable within the else block rather than into the
diff variable in the parent scope, causing a null diff to always be
produced.
This restores the expected behavior: a computed data resource appears in
the diff, so it can then be fetched during the apply walk.
Apparently there's been a regression in the creation of data resource
diffs: they aren't showing up in the plan at all.
As a first step to fixing this, this is an intentionally-failing test
that proves it's broken.
A consequnce of the work done in #6185 was that variables which were in
a module but not set explicitly (i.e. the default value was relied upon)
were marked as type errors. This was reported in #6230.
This commit adds a test case for this and a patch which fixes the issue.