Replace the old mock provider test functions with modern equivalents.
There were a lot of inconsistencies in how they were used, so we needed
to update a lot of tests to match the correct behavior.
This evaluation was required when refresh ran in a separate walk and
managed resources were only partly handled by configuration. Now that we
have the correct dependency information available when refreshing
configured resources, we can update their state accordingly. Since
orphaned resources are not refreshed, they can retain their stored
dependencies for correct ordering.
This also prevents users from introducing cycles with nodes they can't
"see", since only orphaned nodes will retain their stored dependencies,
and the remaining nodes will be updated according to the configuration.
* terraform: add helper functions for creating test state
testSetResourceInstanceCurrent and testSetResourceInstanceTainted are
wrapper functions around states.Module.SetResourceInstanceCurrent()
used to set a resource in state. They work with current, non-deposed
resources with no dependencies.
testSetResourceInstanceDeposed can be used to set a desosed resource in state.
* terraform: update all tests to use modern providers and state
a large refactor to addrs.AbsProviderConfig, embedding the addrs.Provider instead of a Type string. I've added and updated tests, added some Legacy functions to support older state formats and shims, and added a normalization step when reading v4 (current) state files (not the added tests under states/statefile/roundtrip which work with both current and legacy-style AbsProviderConfig strings).
The remaining 'fixme' and 'todo' comments are mostly going to be addressed in a subsequent PR and involve looking up a given local provider config's FQN. This is fine for now as we are only working with default assumption.
* Introduce "Local" terminology for non-absolute provider config addresses
In a future change AbsProviderConfig and LocalProviderConfig are going to
become two entirely distinct types, rather than Abs embedding Local as
written here. This naming change is in preparation for that subsequent
work, which will also include introducing a new "ProviderConfig" type
that is an interface that AbsProviderConfig and LocalProviderConfig both
implement.
This is intended to be largely just a naming change to get started, so
we can deal with all of the messy renaming. However, this did also require
a slight change in modeling where the Resource.DefaultProviderConfig
method has become Resource.DefaultProvider returning a Provider address
directly, because this method doesn't have enough information to construct
a true and accurate LocalProviderConfig -- it would need to refer to the
configuration to know what this module is calling the provider it has
selected.
In order to leave a trail to follow for subsequent work, all of the
changes here are intended to ensure that remaining work will become
obvious via compile-time errors when all of the following changes happen:
- The concept of "legacy" provider addresses is removed from the addrs
package, including removing addrs.NewLegacyProvider and
addrs.Provider.LegacyString.
- addrs.AbsProviderConfig stops having addrs.LocalProviderConfig embedded
in it and has an addrs.Provider and a string alias directly instead.
- The provider-schema-handling parts of Terraform core are updated to
work with addrs.Provider to identify providers, rather than legacy
strings.
In particular, there are still several codepaths here making legacy
provider address assumptions (in order to limit the scope of this change)
but I've made sure each one is doing something that relies on at least
one of the above changes not having been made yet.
* addrs: ProviderConfig interface
In a (very) few special situations in the main "terraform" package we need
to make runtime decisions about whether a provider config is absolute
or local.
We currently do that by exploiting the fact that AbsProviderConfig has
LocalProviderConfig nested inside of it and so in the local case we can
just ignore the wrapping AbsProviderConfig and use the embedded value.
In a future change we'll be moving away from that embedding and making
these two types distinct in order to represent that mapping between them
requires consulting a lookup table in the configuration, and so here we
introduce a new interface type ProviderConfig that can represent either
AbsProviderConfig or LocalProviderConfig decided dynamically at runtime.
This also includes the Config.ResolveAbsProviderAddr method that will
eventually be responsible for that local-to-absolute translation, so
that callers with access to the configuration can normalize to an
addrs.AbsProviderConfig given a non-nil addrs.ProviderConfig. That's
currently unused because existing callers are still relying on the
simplistic structural transform, but we'll switch them over in a later
commit.
* rename LocalType to LocalName
Co-authored-by: Kristin Laemmert <mildwonkey@users.noreply.github.com>
* huge change to weave new addrs.Provider into addrs.ProviderConfig
* terraform: do not include an empty string in the returned Providers /
Provisioners
- Fixed a minor bug where results included an extra empty string
* terraform/context: use new addrs.Provider as map key in provider factories
* added NewLegacyProviderType and LegacyString funcs to make it explicit that these are temporary placeholders
This PR introduces a new concept, provider fully-qualified name (FQN), encapsulated by the `addrs.Provider` struct.
EvalRefreshDependencies is used to update resource dependencies when
they don't exist, allow broken or old states to be updated. While
appending any newly found dependencies is tempting to have the largest
set available, changes to the config could conflict with the prior
dependencies causing cycles.
Refresh should load any new dependencies found because of configuration
or state changes, but retain any dependencies already in the state.
Orphaned resources would not be in config, but we do not want to lose
the destroy ordering for the later apply.
Make use of the new Dependencies field in the instance state.
The inter-instance dependencies will be determined from the complete
reference graph, so that absolute addresses can be stored, rather than
just references within a module. The Dependencies are added to the node
in the same manner as state, i.e. via an "attacher" interface and
transformer. This is because dependencies are calculated from the graph
itself, and not from the config.
The old logic for `depends_on` was to short-circuit evaluation of the
data source, but that prevented a plan and state from being recorded.
Use the (currently unused) ForcePlanRead to ensure that the plan is
recorded when the config contains `depends_on`.
This does not fix the fact that depends on does not work with data
sources, and will still produce a perpetual diff. This is only to fix
evaluation errors when an indexed data source is evaluated during
refresh.
The count for a data resource can potentially depend on a managed resource
that isn't recorded in the state yet, in which case references to it will
always return unknown.
Ideally we'd do the data refreshes during the plan phase as discussed in
#17034, which would avoid this problem by planning the managed resources
in the same walk, but for now we'll just skip refreshing any data
resources with an unknown count during refresh and defer that work to the
apply phase, just as we'd do if there were unknown values in the main
configuration for the data resource.
Our post-refresh safety check had the constraint and real type inverted,
so previously any refresh of a resource type with a dynamically-typed
attribute would fail this type check.
Also includes a small tweak to the error message from this check since the
old one was a little awkward to read in practice when the error is a
cty.PathError rendered with an attribute path prefix.
If an instance object in state has an earlier schema version number then
it is likely that the schema we're holding won't be able to decode the
raw data that is stored. Instead, we must ask the provider to upgrade it
for us first, which might also include translating it from flatmap form
if it was last updated with a Terraform version earlier than v0.12.
This ends up being a "seam" between our use of int64 for schema versions
in the providers package and uint64 everywhere else. We intend to
standardize on int64 everywhere eventually, but for now this remains
consistent with existing usage in each layer to keep the type conversion
noise contained here and avoid mass-updates to other Terraform components
at this time.
This also includes a minor change to the test helpers for the
backend/local package, which were inexplicably setting a SchemaVersion of
1 on the basic test state but setting the mock schema version to zero,
creating an invalid situation where the state would need to be downgraded.
Since the refresh walk creates a partial plan to account for objects that
are yet to be created, we need to provide at least a basic mock of the
PlanProviderChange provider method.
For now we're using the old-style "DiffFn" shim interface since that's
already available for use in other tests.
Significant changes to the provider interface left a lot of the
tests in a non-buildable state. This set of changes gets the
tests building again but does not attempt to make them run to
completion or pass.
After this commit, it is possible to build a test program for
the ./terraform package but it will panic during its run. That
will be addressed in subsequent commits.
Due to how often the state and plan types are referenced throughout
Terraform, there isn't a great way to switch them out gradually. As a
consequence, this huge commit gets us from the old world to a _compilable_
new world, but still has a large number of known test failures due to
key functionality being stubbed out.
The stubs here are for anything that interacts with providers, since we
now need to do the follow-up work to similarly replace the old
terraform.ResourceProvider interface with its replacement in the new
"providers" package. That work, along with work to fix the remaining
failing tests, will follow in subsequent commits.
The aim here was to replace all references to terraform.State and its
downstream types with states.State, terraform.Plan with plans.Plan,
state.State with statemgr.State, and switch to the new implementations of
the state and plan file formats. However, due to the number of times those
types are used, this also ended up affecting numerous other parts of core
such as terraform.Hook, the backend.Backend interface, and most of the CLI
commands.
Just as with 5861dbf3fc49b19587a31816eb06f511ab861bb4 before, I apologize
in advance to the person who inevitably just found this huge commit while
spelunking through the commit history.
The "config" package is no longer used and will be removed as part
of the 0.12 release cleanup. Since configschema is part of the
"new world" of configuration modelling, it makes more sense for
it to live as a subdirectory of the newer "configs" package.
We now fetch all of the necessary schemas during context creation, so we
can just thread that repository of schemas through into EvalContext and
Evaluator and access the schemas as needed without any further fetching.
This requires updating a few tests to have a valid Provider address in
their state objects, because we need that in order to trigger the loading
of the relevant schema.
There are still some other issues with some of these tests right now, but
all the ones that need to have schema should now have it.
It seems that there is a bug with the evaluation of child module input
variables where they can't find their schema even when a mock is provided.
Will attack this in a subsequent commit.
After the refactoring to integrate HCL2 many of the tests were no longer
using correct types, attribute names, etc.
This is a bulk update of all of the tests to make them compile again, with
minimal changes otherwise. Although the tests now compile, many of them
do not yet pass. The tests will be gradually repaired in subsequent
commits, as we continue to complete the refactoring and retrofit work.
Validation is the best time to return detailed diagnostics
to the user since we're much more likely to have source
location information, etc than we are in later operations.
This change doesn't actually add any detail to the messages
yet, but it changes the interface so that we can gradually
introduce more detailed diagnostics over time.
While here there are some minor adjustments to some of the
messages to improve their consistency with terminology we
use elsewhere.
Added a new test that ensures that pre/post-diff hooks are not called
when EvalDiff is run with Stub set, tested through a full refresh run.
This helps test the expected behaviour of EvalDiff itself, versus the
end result of the diff being counted in a plan, which is what the
TestLocal_planScaleOutNoDupeCount test in backend/local checks.
Rather than providing an already-resolved map of plugins to core, we now
provide a "provider resolver" which knows how to resolve a set of provider
dependencies, to be determined later, and produce that map.
This requires the context to be instantiated in a different way, so this
very noisy diff is a mostly-mechanical update of all of the existing
places where contexts get created for testing, using some adapted versions
of the pre-existing utilities for passing in mock providers.
Previously the Type of a ResourceState was generally ignored, but we're
now starting to use it to figure out which providers are needed to
support the resources in state so our tests need to set it accurately
in order to get the expected result.