For any block content we evaluate dynamically via this API, we'll make a
special allowance for users to optionally write members of a list
attribute instead as a sequence of nested blocks, thus allowing some
existing provider features that were assuming this capability to continue
to support it after v0.12.
This should not be used for any new provider features, and should ideally
be eventually phased out so that there aren't two
similar-but-slightly-different syntaxes for saying the same thing.
The previous commit added this flag but did not implement it. Here we
implement it by adjusting the shape of schema we return to Terraform Core
to mark the attribute as untyped and then ensure that gets handled
correctly on the SDK side.
The previous commit added a new flag to schema.Schema which is documented
to make a list with MaxItems: 1 be presented to Terraform Core as a single
value instead, giving a way to switch to non-list nested resources without
it being a breaking change for Terraform v0.11 users as long as it's done
prior to a provider's first v0.12-compatible release.
This is the implementation of that mechanism. It's intentionally
implemented as a suite of extra fixups rather than direct modifications to
existing shim code because we want to ensure that this has no effect
whatsoever on the result of a resource type that _isn't_ using AsSingle.
Although there is some small unit test coverage of the fixup steps here,
the primary testing for this is in the test provider since the integration
of all of these fixup steps in the correct order is the more important
result than any of the intermediate fixup steps.
This should be the final change from removing the flatmap normalization.
Since we're no longer trying to a consistent zero or null value in the
flatmap config, rather we're trying to maintain the previously applied
value, ReadResource also needs to apply the normalizeNullValues step in
order to prevent unexpected diffs.
This makes some slight adjustments to the shape of the schema we
present to Terraform Core without affecting how it is consumed by the
SDK and thus the provider. This mechanism is designed specifically to
avoid changing how the schema is interpreted by the SDK itself or by the
provider, so that prior behavior can be preserved in Terraform v0.11 mode.
This also includes a new rule that Computed-only (i.e. not also Optional)
schemas _always_ map to attributes, because that is a better mapping of
the intent: they are object values to be used in expressions. Nested
blocks conceptually represent nested objects that are in some sense
independent of what they are embedded in, and so they cannot themselves be
computed.
As we've improved the cty.Value normalization, we need to remove
normalization procedures from the flatmap handling. Keeping the empty
containers in the flatmap will prevent unexpected nils from being added
to some schema configurations
Providers were not strict (and were not forced to be) about customizing
the diff when a computed attribute needed to be updated during apply.
The fix we have in place to prevent loss of information during the
helper/schema apply process would add in single missing value back in.
The first place this was caught was when we attempt to fix up the
flatmapped attributes. The 1->0 count error is now better handled by our
cty.Value normalization step, so we can remove the special apply case
here altogether
The next place is in normalizeNullValues, and since the intent was to
re-insert missing zero-value lists and sets, adding a check for a length
of 0 protects us from adding in extra elements.
The new test fixture emulated common provider behavior of re-computing
values without customizing the diff. Since we can work around it, and
core will provider appropriate warnings, the shims should try to
maintain the legacy behavior.
The NewExtra values are stored outside the diff from plan, and the
original keys may not contain the ~ prefix. Adding the NewExtra back
into the diff with the mismatched key was causing an entire new set
element to be populated. Since this symbol isn't used to apply the diff
in helper/schema, we can simply strip them out.
The helper/schema handling of lists loses empty string values, but
retains the correct count. Only re-count the values if the count is
missing entirely, and allow our shims to re-populate the zero values.
Terraform core expects a sane state even when the provider returns an
error. Make sure at the prior state is always the default value to
return, and then alway attempt to process any state returned by
provider.Apply.
Previously we were using the type name requested in the import to select
the schema, but a provider is free to return additional objects of other
types as part of an import result, and so it's important that we perform
schema selection separately for each returned object.
If we don't do this, we get confusing downstream errors where the
resulting object decodes to the wrong type and breaks various invariants
expected by Terraform Core.
The testResourceImportOther test in the test provider didn't catch this
previously because it happened to have an identical schema to the other
resource type being imported. Now the schema is changed and also there's
a computed attribute we can set as part of the refresh phase to make sure
we're completing the Read call properly during import. Refresh was working
correctly, but we didn't have any tests for it as part of the import flow.
With the new diff.Apply we can keep the diff mostly intact, but we need
turn off all RequiresNew flags so that the prior state is not removed
from the apply.
One quirky aspect of our import feature is that we allow the importer to
produce additional resources alongside the one that was imported, such as
to create separate rules for each rule of an imported security group.
Providers need to be able to set the types of these other resources since
they may not match the "main" resource type. They do this by calling
ResourceData.SetType, which in turn sets InstanceState.Ephemeral.Type.
In our shims here we therefore need to copy that out into our new TypeName
field so that the new core import code can see it and create the right
type in the state.
Testing this required a minor change to the test harness to allow the
ImportStateCheck function to see the resource type.
If there were no matching keys, and there was no diff at all, don't set
a zero count for the container. Normally Providers can't reliably detect
empty vs unset here, but there are some cases that worked.
This is a HCL feature rather than a Terraform feature really, but we want
to make sure it keeps working consistently in future versions of Terraform
so this is a Terraform-flavored test for the block expansion behavior.
In particular, it tests that a nested dynamic block can access the parent
iterator, so that we won't regress #19543 in future.
In prior versions of Terraform we permitted inconsistent use of indexes
in resource references, but in as of 0.12 the index usage must correlate
properly with whether "count" is set on the resource.
Since users are likely to have existing configurations with incorrect
usage, here we introduce some specialized error messages for situations
where we can detect such issues statically. This seems to cover all of the
common patterns we've seen in practice.
Some usage patterns will fall back on a less-helpful dynamic error here,
but no configurations coming from 0.11 can end up that way because 0.11
did not permit forms such as aws_instance.no_count[count.index].bar that
this validation would not be able to "see".
Our configuration upgrade tool also contains a fix for this already, but
it takes a more conservative approach of adding the index [1] rather than
[count.index] because it can't be sure (without human help) if correlation
of indices is what was intended.
Terraform used to provide empty diffs to the provider when calculating
`ignore_changes`, which would cause some DiffSuppressFunc to fail, as
can be seen in #18209.
Verify that this is no longer the case in 0.12