Previously we were using the experimental HCL 2 repository, but now we'll
shift over to the v2 import path within the main HCL repository as part of
actually releasing HCL 2.0 as stable.
This is a mechanical search/replace to the new import paths. It also
switches to the v2.0.0 release of HCL, which includes some new code that
Terraform didn't previously have but should not change any behavior that
matters for Terraform's purposes.
For the moment the experimental HCL2 repository is still an indirect
dependency via terraform-config-inspect, so it remains in our go.sum and
vendor directories for the moment. Because terraform-config-inspect uses
a much smaller subset of the HCL2 functionality, this does still manage
to prune the vendor directory a little. A subsequent release of
terraform-config-inspect should allow us to completely remove that old
repository in a future commit.
Older versions of terraform could save the backend hash number in a
value larger than an int.
While we could conditionally decode the state into an intermediary data
structure for upgrade, or detect the specific decode error and modify
the json, it seems simpler to just decode into the most flexible value
for now, which is a uint64.
Due to how often the state and plan types are referenced throughout
Terraform, there isn't a great way to switch them out gradually. As a
consequence, this huge commit gets us from the old world to a _compilable_
new world, but still has a large number of known test failures due to
key functionality being stubbed out.
The stubs here are for anything that interacts with providers, since we
now need to do the follow-up work to similarly replace the old
terraform.ResourceProvider interface with its replacement in the new
"providers" package. That work, along with work to fix the remaining
failing tests, will follow in subsequent commits.
The aim here was to replace all references to terraform.State and its
downstream types with states.State, terraform.Plan with plans.Plan,
state.State with statemgr.State, and switch to the new implementations of
the state and plan file formats. However, due to the number of times those
types are used, this also ended up affecting numerous other parts of core
such as terraform.Hook, the backend.Backend interface, and most of the CLI
commands.
Just as with 5861dbf3fc49b19587a31816eb06f511ab861bb4 before, I apologize
in advance to the person who inevitably just found this huge commit while
spelunking through the commit history.
The "config" package is no longer used and will be removed as part
of the 0.12 release cleanup. Since configschema is part of the
"new world" of configuration modelling, it makes more sense for
it to live as a subdirectory of the newer "configs" package.
The adaptation of ModuleState.RemovedOutputs for the new config types
was incorrect because it took the absence of any output map as "nothing to
do", rather than "everything has been removed" as expected.
Now it treats a nil map like an empty map, detecting _all_ of the outputs
as having been removed if the output map is nil.
After the refactoring to integrate HCL2 many of the tests were no longer
using correct types, attribute names, etc.
This is a bulk update of all of the tests to make them compile again, with
minimal changes otherwise. Although the tests now compile, many of them
do not yet pass. The tests will be gradually repaired in subsequent
commits, as we continue to complete the refactoring and retrofit work.
We've not yet adjusted any of the state structs to reflect our new address
types because they are used with encoding/json to produce our state file
format, but the shimming here previously was incorrect because it failed
to include the special "root" string that's always required at element
zero of a module path in the state.
Due to how deeply the configuration types go into Terraform Core, there
isn't a great way to switch out to HCL2 gradually. As a consequence, this
huge commit gets us from the old state to a _compilable_ new state, but
does not yet attempt to fix any tests and has a number of known missing
parts and bugs. We will continue to iterate on this in forthcoming
commits, heading back towards passing tests and making Terraform
fully-functional again.
The three main goals here are:
- Use the configuration models from the "configs" package instead of the
older models in the "config" package, which is now deprecated and
preserved only to help us write our migration tool.
- Do expression inspection and evaluation using the functionality of the
new "lang" package, instead of the Interpolator type and related
functionality in the main "terraform" package.
- Represent addresses of various objects using types in the addrs package,
rather than hand-constructed strings. This is not critical to support
the above, but was a big help during the implementation of these other
points since it made it much more explicit what kind of address is
expected in each context.
Since our new packages are built to accommodate some future planned
features that are not yet implemented (e.g. the "for_each" argument on
resources, "count"/"for_each" on modules), and since there's still a fair
amount of functionality still using old-style APIs, there is a moderate
amount of shimming here to connect new assumptions with old, hopefully in
a way that makes it easier to find and eliminate these shims later.
I apologize in advance to the person who inevitably just found this huge
commit while spelunking through the commit history.
This is a rather-messy, complex change to get the "command" package
building again against the new backend API that was updated for
the new configuration loader.
A lot of this is mechanical rewriting to the new API, but
meta_config.go and meta_backend.go in particular saw some major
changes to interface with the new loader APIs and to deal with
the change in order of steps in the backend API.
ReadState would hide any errors, assuming that it was an empty state.
This can mask errors on Windows, where the OS enforces read locks on the
state file.
The init command needs to parse the state to resolve providers, but
changes to the state format can cause that to fail with difficult to
understand errors. Check the terraform version during init and provide
the same error that would be returned by plan or apply.
Remove the module entry from the state if a module is no longer in the
configuration. Modules are not removed if there are any existing
resources with the module path as a prefix. The only time this should be
the case is if a module was removed in the config, but the apply didn't
target that module.
Create a NodeModuleRemoved and an associated EvalDeleteModule to track
the module in the graph then remove it from the state. The
NodeModuleRemoved dependencies are simply any other node which contains
the module path as a prefix in its path.
This could have probably been done much easier as a step in pruning the
state, but modules are going to have to be promoted to full graph nodes
anyway in order to support count.
You can't find orphans by walking the config, because by definition
orphans aren't in the config.
Leaving the broken test for when empty modules are removed from the
state as well.
Update all references to the version values to use the new package.
The VersionString function was left in the terraform package
specifically for the aws provider, which is vendored. We can remove that
last call once the provider is updated.
We stash the locals in the module state in a map that is ignored for JSON
serialization. We don't include locals in the persisted state because they
can be trivially recomputed and this allows us to assume that they will
pass through verbatim, without any normalization or other transforms
caused by the JSON serialization.
From a user standpoint a local is just a named alias for an expression,
so it's desirable that the result passes through here in as raw a form
as possible, so it behaves as closely as possible to simply using the
given expression directly.
The state returned from the testState helper shouldn't rely on any
mutations caused by WriteState. The Init function (which is analogous to
NewState) shoudl set any required fields.
Previously we relied on a constellation of coincidences for everything to
work out correctly with state serials. In particular, callers needed to
be very careful about mutating states (or not) because many different bits
of code shared pointers to the same objects.
Here we move to a model where all of the state managers always use
distinct instances of state, copied when WriteState is called. This means
that they are truly a snapshot of the state as it was at that call, even
if the caller goes on mutating the state that was passed.
We also adjust the handling of serials so that the state managers ignore
any serials in incoming states and instead just treat each Persist as
the next version after what was most recently Refreshed.
(An exception exists for when nothing has been refreshed, e.g. because
we are writing a state to a location for the first time. In that case
we _do_ trust the caller, since the given state is either a new state
or it's a copy of something we're migrating from elsewhere with its
state and lineage intact.)
The intent here is to allow the rest of Terraform to not worry about
serials and state identity, and instead just treat the state as a mutable
structure. We'll just snapshot it occasionally, when WriteState is called,
and deal with serials _only_ at persist time.
This is intended as a more robust version of #15423, which was a quick
hotfix to an issue that resulted from our previous slopping handling
of state serials but arguably makes the problem worse by depending on
an additional coincidental behavior of the local backend's apply
implementation.
When the InstanceState.Meta fields are marshaled, numeric values may
change types. The timeout system currently inserts integer values, which
will be unmarshal as float64s.
To ensure that a state which has round-tripped through json is equal to
itself, compare the json representation of the Meta values.
* Revert #11245, #11321, #11498 and #11757
These PR’s are all related to issue #11170 for which I would like to propose a different solution then the one currently implemented.
* A different approach to solve #11170
This approach has (IMHO) a few advantages with regards to the solution currently implemented. I will elaborate on this in the PR.
The documentation for Refresh indicates that it will always return a
valid state, but that wasn't true in the case of a graph builder error.
While this same concept wasn't documented for Apply, it was still
assumed in the terraform apply code.
Since the helper testing framework relies on the absence of a state to
determine if it can call Destroy, the Context can't can't start
returning a state in all cases. Document this, and use the State method
to fetch the correct state value after Apply.
Add a nil check to the WriteState function, so that writing a nil state
is a noop.
Make sure to init before sorting the state, to make sure we're not
attempting to sort nil values. This isn't technically needed with the
current code, but it's just safer in general.
duplicate entries could end up in "depends_on" in the state, which could
possible lead to erroneous state comparisons. Remove them when walking
the graph, and remove existing duplicates when pruning the state.
This method mirrors that of config.Backend, so we can compare the
configration of a backend read from a config vs that of a backend read
from a state. This will prevent init from reinitializing when using
`-backend-config` options that match the existing state.
Module resource were being sorted lexically by name by the state filter.
If there are 10 or more resources, the order won't match the index
order, and resources will have different indexes in their new location.
Sort the FilterResults by index numerically when the names match.
Clean up the module String output for visual inspection by sorting
Resource name parts numerically when they are an integer value.
Due to the change to `interface{}` we need to use `reflect.DeepEqual`
here. With the restriction of primitive types this should always be
safe. We'll never get functions, channels, etc.
This changes the type of values in Meta for InstanceState to
`interface{}`. They were `string` before.
This will allow richer structures to be persisted to this without
flatmapping them (down with flatmap!). The documentation clearly states
that only primitives/collections are allowed here.
The only thing using this was helper/schema for schema versioning.
Appropriate type checking was added to make this change safe.
The timeout work @catsby is doing will use this for a richer structure.
During backend initialization, especially during a migration, there is a
chance that an existing state could be overwritten.
Attempt to get a locks when writing the new state. It would be nice to
always have a lock when reading the states, but the recursive structure
of the Meta.Backend config functions makes that quite complex.
Read state would assume that having a reader meant there should be a
valid state. Check for an empty file and return ErrNoState to
differentiate a bad file from an empty one.
Removal of empty nested containers from a flatmap would sometimes fail a
sanity check when removed in the wrong order. This would only fail
sometimes due to map iteration. There was also an off-by-one error in
the prefix check which could match the incorrect keys.
When a InstanceState is merged with an InstanceDiff, any maps arrays or
sets that no longer exist are shown as empty with a count of 0. If these
are left in the flatmap structure, they will cause errors during
expansion because their existing in the map affects the counts for
parent structures.
Init should only _add_ values, not remove them.
During graph execution, there are steps that expect that a state isn't
being actively pruned out from under it. Namely: writing deposed states.
Writing deposed states has no way to handle if a state changes
underneath it because the only way to uniquely identify a deposed state
is its index in the deposed array. When destroying deposed resources, we
set the value to `<nil>`. If the array is pruned before the next deposed
destroy, then the indexes have changed, and this can cause a crash.
This PR does the following (with more details below):
* `init()` no longer prunes.
* `ReadState()` always prunes before returning. I can't think of a
scenario where this is unsafe since generally we can always START
from a pruned state, its just causing problems to prune
mid-execution.
* Exported State APIs updated to be robust against nil ModuleStates.
Instead, I think we should adopt the following semantics for init/prune
in our structures that support it (Diff, for example). By having
consistent semantics around these functions, we can avoid this in the
future and have set expectations working with them.
* `init()` (in anything) will only ever be additive, and won't change
ordering or existing values. It won't remove values.
* `prune()` is destructive, expectedly.
* Functions on a structure must not assume a pruned structure 100% of
the time. They must be robust to handle nils. This is especially
important because in many cases values such as `Modules` in state
are exported so end users can simply modify them outside of the
exported APIs.
This PR may expose us to unknown crashes but I've tried to cover our
cases in exposed APIs by checking for nil.
It makes for sense for this to happen in State.prune(). Also move a
redundant pruning from ResourceState.init, and make sure
ResourceState.prune is called from the parent's prune method.
The Deposed slice wasn't being normalized and nil values could be read
in from a state file. Filter out the nils during init. There is
still a bug in copystructure, but that will be addressed separately.