Currently Terraform will use an entry from the global plugin cache only if
it matches a checksum already recorded in the dependency lock file. This
allows Terraform to produce a complete lock file entry on the first
encounter with a new provider, whereas using the cache in that case would
cause the lock file to only cover the single package in the cache and
thereefore be unusable on any other operating system or CPU architecture.
This temporary CLI config option is a pragmatic exception to support those
who cannot currently correctly use the dependency lock file but who still
want to benefit from the plugin cache. With this setting enabled,
Terraform has permission to produce a dependency lock file that is only
suitable for the current system if that would allow use of an existing
entry in the plugin cache.
We are introducing this option to resolve a conflict between the needs of
folks who are using the dependency lock file as expected and the needs of
folks who cannot use the dependency lock file for some reason. The hope
then is to give respite to those who need this exception in the meantime
while we understand better why they cannot use the dependency lock file
and improve its design so that everyone will be able to use it
successfully in a future version of Terraform. This option will become a
silent no-op in a future version of Terraform, once the dependency lock
file behavior is sufficient for all supported Terraform development
workflows.
In the original incarnation of Meta.providerFactories we were returning
into a Meta.contextOpts whose signature didn't allow it to return an
error directly, and so we had compromised by making the provider factory
functions themselves return errors once called.
Subsequent work made Meta.contextOpts need to return an error anyway, but
at the time we neglected to update our handling of the providerFactories
result, having it still defer the error handling until we finally
instantiate a provider.
Although that did ultimately get the expected result anyway, the error
ended up being reported from deep in the guts of a Terraform Core graph
walk, in whichever concurrently-visited graph node happened to try to
instantiate the plugin first. This meant that the exact phrasing of the
error message would vary between runs and the reporting codepath didn't
have enough context to given an actionable suggestion on how to proceed.
In this commit we make Meta.contextOpts pass through directly any error
that Meta.providerFactories produces, and then make Meta.providerFactories
produce a special error type so that Meta.Backend can ultimately return
a user-friendly diagnostic message containing a specific suggestion to
run "terraform init", along with a short explanation of what a provider
plugin is.
The reliance here on an implied contract between two functions that are
not directly connected in the callstack is non-ideal, and so hopefully
we'll revisit this further in future work on the overall architecture of
the CLI layer. To try to make this robust in the meantime though, I wrote
it to use the errors.As function to potentially unwrap a wrapped version
of our special error type, in case one of the intervening layers is
changed at some point to wrap the downstream error before returning it.
In historical versions of Terraform the responsibility to check this was
inside the terraform.NewContext function, along with various other
assorted concerns that made that function particularly complicated.
More recently, we reduced the responsibility of the "terraform" package
only to instantiating particular named plugins, assuming that its caller
is responsible for selecting appropriate versions of any providers that
_are_ external. However, until this commit we were just assuming that
"terraform init" had correctly selected appropriate plugins and recorded
them in the lock file, and so nothing was dealing with the problem of
ensuring that there haven't been any changes to the lock file or config
since the most recent "terraform init" which would cause us to need to
re-evaluate those decisions.
Part of the game here is to slightly extend the role of the dependency
locks object to also carry information about a subset of provider
addresses whose lock entries we're intentionally disregarding as part of
the various little edge-case features we have for overridding providers:
dev_overrides, "unmanaged providers", and the testing overrides in our
own unit tests. This is an in-memory-only annotation, never included in
the serialized plan files on disk.
I had originally intended to create a new package to encapsulate all of
this plugin-selection logic, including both the version constraint
checking here and also the handling of the provider factory functions, but
as an interim step I've just made version constraint consistency checks
the responsibility of the backend/local package, which means that we'll
always catch problems as part of preparing for local operations, while
not imposing these additional checks on commands that _don't_ run local
operations, such as "terraform apply" when in remote operations mode.
Thus far our various interactions with the bits of state we keep
associated with a working directory have all been implemented directly
inside the "command" package -- often in the huge command.Meta type -- and
not managed collectively via a single component.
There's too many little codepaths reading and writing from the working
directory and data directory to refactor it all in one step, but this is
an attempt at a first step towards a future where everything that reads
and writes from the current working directory would do so via an object
that encapsulates the implementation details and offers a high-level API
to read and write all of these session-persistent settings.
The design here continues our gradual path towards using a dependency
injection style where "package main" is solely responsible for directly
interacting with the OS command line, the OS environment, the OS working
directory, the stdio streams, and the CLI configuration, and then
communicating the resulting information to the rest of Terraform by wiring
together objects. It seems likely that eventually we'll have enough wiring
code in package main to justify a more explicit organization of that code,
but for this commit the new "workdir.Dir" object is just wired directly in
place of its predecessors, without any significant change of code
organization at that top layer.
This first commit focuses on the main files and directories we use to
find provider plugins, because a subsequent commit will lightly reorganize
the separation of concerns for plugin launching with a similar goal of
collecting all of the relevant logic together into one spot.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.