With the demise of the early config loader, we want to show core
version errors first, followed by backend errors, and only then
show other errors with the configuration.
* Add golden JSON test for Terraform plan
* Add data source to golden JSON plan
* Move output comparison code into shared helper function
* Add note for maintainer to contact TFC when UI changes
UI changes may potentially impact the behavior of structured run output
on TFC.
* Add test_data_source to other mock providers
Planned output changes are represented in the JSON output format using
the same change object as planned resource changes. This structure
includes an `after` value and a parallel `after_unknown` value, which
can be combined to determine which specific parts of a value are known
only at apply time.
Previously, structured output values would be marked in the JSON plan as
coarsely known or unknown, even if only some subset of the structure
will be known only at apply time. This simplification was unnecessary,
and this commit reuses the same logic for resource changes to give more
information to consumers of this format.
For example, consider this output:
output "bar" {
value = tolist([
"hello",
timestamp(),
"world",
])
}
The plan output for this output would be:
+ bar = [
+ "hello",
+ (known after apply),
+ "world",
]
For the same plan, the JSON output was previously:
"bar": {
"actions": [
"create"
],
"before": null,
"after_unknown": true,
"before_sensitive": false,
"after_sensitive": false
}
After this commit, the output is instead:
"bar": {
"actions": [
"create"
],
"before": null,
"after": [
"hello",
null,
"world"
],
"after_unknown": [
false,
true,
false
],
"before_sensitive": false,
"after_sensitive": false
}
Previously the supported JSON plan and state formats included only
serialized output values, which was a lossy serialization of the
Terraform type system. This commit adds a type field in the usual cty
JSON format, which allows reconstitution of the original value.
For example, previously a list(string) and a set(string) containing the
same values were indistinguishable. This change serializes these as
follows:
{
"value": ["a","b","c"],
"type": ["list","string"]
}
and:
{
"value": ["a","b","c"],
"type": ["set","string"]
}
In order to include condition block results in the JSON plan output, we
must store them in the plan and its serialization.
Terraform can evaluate condition blocks multiple times, so we must be
able to update the result. Accordingly, the plan.Conditions object is a
map with keys representing the condition block's address. Condition
blocks are not referenceable in any other context, so this address form
cannot be used anywhere in the configuration.
The commit includes a new test case for the JSON output of a
refresh-only plan, which is currently the only way for a failing
condition result to be rendered through this path.
When rendering configuration as JSON, we have a single map of provider
configurations at the top level, since these are globally applicable.
Each resource has an opaque key into this map which points at the
configuration data for the provider.
This commit fixes two bugs in this implementation:
- Resources in non-root modules had an invalid provider config key,
which meant that there was never a valid reference to the provider
config block. These keys were prefixed with the local module name
instead of the path to the module. This is now corrected.
- Modules with passed provider configs would point to either an empty
provider config block or one which is not present at all. This has
been fixed so that these resources point to the provider config block
from the calling module (or wherever up the module tree it was
originally defined).
We also add a "full_name" key-value pair to the provider config block,
with the entire fully-qualified provider name including hostname and
namespace.
Previously we would only ever add new lock entries or update existing
ones. However, it's possible that over time a module may _cease_ using
a particular provider, at which point we ought to remove it from the lock
file so that operations won't fail when seeing that the provider cache
directory is inconsistent with the lock file.
Now the provider installer (EnsureProviderVersions) will remove any lock
file entries that relate to providers not included in the given
requirements, which therefore makes the resulting lock file properly match
the set of packages the installer wrote into the cache.
This does potentially mean that someone could inadvertently defeat the
lock by removing a provider dependency, running "terraform init", then
undoing that removal, and finally running "terraform init" again. However,
that seems relatively unlikely compared to the likelihood of removing
a provider and keeping it removed, and in the event it _did_ happen the
changes to the lock entry for that provider would be visible in the diff
of the provider lock file as usual, and so could be noticed in code
review just as for any other change to dependencies.
There are a few command line options for "terraform init" which are only
relevant when working with traditional backends, with the Cloud
integration previously just mostly ignoring them, or sometimes misbehaving
slightly due to them creating an unreasonable situation.
Now we'll catch these and return explicit errors, in order to be clear
that these options are not needed nor supported in Cloud mode.
Earlier work to make "terraform init" interruptible made the getproviders
package context-aware in order to allow provider installation to be cancelled.
Here we make a similar change for module installation, which is now also
cancellable with SIGINT. This involves plumbing context through initwd and
getmodules. Functions which can make network requests now include a context
parameter whose cancellation cancels those requests.
Since the module installation code is shared, "terraform get" is now
also interruptible during module installation.
Based on feedback during earlier alpha releases, we've decided to move
forward with the current design for the first phase of config-driven
refactoring.
Therefore here we've marked the experiment as concluded with no changes
to the most recent incarnation of the functionality. The other changes
here are all just updating test fixtures to no longer declare that they
are using experimental features.
We introduced this experiment to gather feedback, and the feedback we saw
led to us deciding to do another round of design work before we move
forward with something to meet this use-case.
In addition to being experimental, this has only been included in alpha
releases so far, and so on both counts it is not protected by the
Terraform v1.0 Compatibility Promises.
The -lock and -lock-timeout flags were removed prior to the release of
1.0 as they were thought to have no effect. This is not true in the case
of state migrations when changing backends. This commit restores these
flags, and adds test coverage for locking during backend state
migration.
Also update the help output describing other boolean flags, showing the
argument as the user would type it rather than the default behavior.
We must ensure that the terraform required_version is checked as early
as possible, so that new configuration constructs don't cause init to
fail without indicating the version is incompatible.
The loadConfig call before the earlyconfig parsing seems to be unneeded,
and we can delay that to de-tangle it from installing the modules which
may have their own constraints.
TODO: it seems that loadConfig should be able to handle returning the
version constraints in the same manner as loadSingleModule.
There are a few different reasons why a resource instance tracked in the
prior state might be considered an "orphan", but previously we reported
them all identically in the planned changes.
In order to help users understand the reason for a surprising planned
delete, we'll now try to specify an additional reason for the planned
deletion, covering all of the main reasons why that could happen.
This commit only introduces the new detail to the plans.Changes result,
though it also incidentally exposes it as part of the JSON plan result
in order to keep that working without returning errors in these new
cases. We'll expose this information in the human-oriented UI output in
a subsequent commit.
When initializing a backend, if the currently selected workspace does
not exist, the user is prompted to select from the list of workspaces
the backend provides.
Instead, we should automatically select the only workspace available
_if_ that's all that's there.
Although with being a nice bit of polish, this enables future
improvments with Terraform Cloud in potentially removing the implicit
depenency on always using the 'default' workspace when the current
configuration is mapped to a single TFC workspace.
Configuration-driven moves are represented in the plan file by setting
the resource's `PrevRunAddr` to a different value than its `Addr`. For
JSON plan output, we here add a new field to resource changes,
`previous_address`, which is present and non-empty only if the resource
is planned to be moved.
Like the CLI UI, refresh-only plans will include move-only changes in
the resource drift JSON output. In normal plan mode, these are elided to
avoid redundancy with planned changes.
Going back a long time we've had a special magic behavior which tries to
recognize a situation where a module author either added or removed the
"count" argument from a resource that already has instances, and to
silently rename the zeroth or no-key instance so that we don't plan to
destroy and recreate the associated object.
Now we have a more general idea of "move statements", and specifically
the idea of "implied" move statements which replicates the same heuristic
we used to use for this behavior, we can treat this magic renaming rule as
just another "move statement", special only in that Terraform generates it
automatically rather than it being written out explicitly in the
configuration.
In return for wiring that in, we can now remove altogether the
NodeCountBoundary graph node type and its associated graph transformer,
CountBoundaryTransformer. We handle moves as a preprocessing step before
building the plan graph, so we no longer need to include any special nodes
in the graph to deal with that situation.
The test updates here are mainly for the graph builders themselves, to
acknowledge that indeed we're no longer inserting the NodeCountBoundary
vertices. The vertices that NodeCountBoundary previously depended on now
become dependencies of the special "root" vertex, although in many cases
here we don't see that explicitly because of the transitive reduction
algorithm, which notices when there's already an equivalent indirect
dependency chain and removes the redundant edge.
We already have plenty of test coverage for these "count boundary" cases
in the context tests whose names start with TestContext2Plan_count and
TestContext2Apply_resourceCount, all of which continued to pass here
without any modification and so are not visible in the diff. The test
functions particularly relevant to this situation are:
- TestContext2Plan_countIncreaseFromNotSet
- TestContext2Plan_countDecreaseToOne
- TestContext2Plan_countOneIndex
- TestContext2Apply_countDecreaseToOneCorrupted
The last of those in particular deals with the situation where we have
both a no-key instance _and_ a zero-key instance in the prior state, which
is interesting here because to exercises an intentional interaction
between refactoring.ImpliedMoveStatements and refactoring.ApplyMoves,
where we intentionally generate an implied move statement that produces
a collision and then expect ApplyMoves to deal with it in the same way as
it would deal with all other collisions, and thus ensure we handle both
the explicit and implied collisions in the same way.
This does affect some UI-level tests, because a nice side-effect of this
new treatment of this old feature is that we can now report explicitly
in the UI that we're assigning new addresses to these objects, whereas
before we just said nothing and hoped the user would just guess what had
happened and why they therefore weren't seeing a diff.
The backend/local plan tests actually had a pre-existing bug where they
were using a state with a different instance key than the config called
for but getting away with it because we'd previously silently fix it up.
That's still fixed up, but now done with an explicit mention in the UI
and so I made the state consistent with the configuration here so that the
tests would be able to recognize _real_ differences where present, as
opposed to the errant difference caused by that inconsistency.
This includes the addition of the new "//go:build" comment form in addition
to the legacy "// +build" notation, as produced by gofmt to ensure
consistent behavior between Go versions. The new directives are all
equivalent to what was present before, so there's no change in behavior.
Go 1.17 continues to use the Unicode 13 tables as in Go 1.16, so this
upgrade does not require also upgrading our Unicode-related dependencies.
This upgrade includes the following breaking changes which will also
appear as breaking changes for Terraform users, but that are consistent
with the Terraform v1.0 compatibility promises.
- On MacOS, Terraform now requires macOS 10.13 High Sierra or later.
This upgrade also includes the following breaking changes which will
appear as breaking changes for Terraform users that are inconsistent with
our compatibility promises, but have justified exceptions as follows:
- cidrsubnet, cidrhost, and cidrnetmask will now reject IPv4 CIDR
addresses whose decimal components have leading zeros, where previously
they would just silently ignore those leading zeros.
This is a security-motivated exception to our compatibility promises,
because some external systems interpret zero-prefixed octets as octal
numbers rather than decimal, and thus the previous lenient parsing could
lead to a different interpretation of the address between systems, and
thus potentially allow bypassing policy when configuring firewall rules
etc.
This upgrade also includes the following breaking changes which could
_potentially_ appear as breaking changes for Terraform users, but that do
not in practice for the reasons given:
- The Go net/url package no longer allows query strings with pairs
separated by semicolons instead of ampersands. This primarily affects
HTTP servers written in Go, and Terraform includes a special temporary
HTTP server as part of its implementation of OAuth for "terraform login",
but that server only needs to accept URLs created by Terraform itself
and Terraform does not generate any URLs that would be rejected.
* terraform: use hcl.MergeBodies instead of configs.MergeBodies for provider configuration
Previously, Terraform would return an error if the user supplied provider configuration via interactive input iff the configuration provided on the command line was missing any required attributes - even if those attributes were already set in config.
That error came from configs.MergeBody, which was designed for overriding valid configuration. It expects that the first ("base") body has all required attributes. However in the case of interactive input for provider configuration, it is perfectly valid if either or both bodies are missing required attributes, as long as the final body has all required attributes. hcl.MergeBodies works very similarly to configs.MergeBodies, with a key difference being that it only checks that all required attributes are present after the two bodies are merged.
I've updated the existing test to use interactive input vars and a schema with all required attributes. This test failed before switching from configs.MergeBodies to hcl.MergeBodies.
* add a command package test that shows that we can still have providers with dynamic configuration + required + interactive input merging
This test failed when buildProviderConfig still used configs.MergeBodies instead of hcl.MergeBodies
Previously, if any resources were found to have drifted, the JSON plan
output would include a drift entry for every resource in state. This
commit aligns the JSON plan output with the CLI UI, and only includes
those resources where the old value does not equal the new value---i.e.
drift has been detected.
Also fixes a bug where the "address" field was missing from the drift
output, and adds some test coverage.
* command: new command, terraform add, generates resource templates
terraform add ADDRESS generates a resource configuration template with all required (and optionally optional) attributes set to null. This can optionally also pre-populate nonsesitive attributes with values from an existing resource of the same type in state (sensitive vals will be populated with null and a comment indicating sensitivity)
* website: terraform add documentation
* jsonplan and jsonstate: include sensitive_values in state representations
A sensitive_values field has been added to the resource in state and planned values which is a map of all sensitive attributes with the values set to true.
It wasn't entirely clear to me if the values in state would suffice, or if we also need to consult the schema - I believe that this is sufficient for state files written since v0.15, and if that's incorrect or insufficient, I'll add in the provider schema check as well.
I also updated the documentation, and, since we've considered this before, bumped the FormatVersions for both jsonstate and jsonplan.
* getproviders ParsePlatform: add check for invalid platform strings with too many parts
The existing logic would not catch things like a platform string containing multiple underscores. I've added an explicit check for exactly 2 parts and some basic tests to prove it.
* command/providers-lock: add tests
This commit adds some simple tests for the providers lock command. While adding this test I noticed that there was a mis-copied error message, so I replaced that with a more specific message. I also added .terraform.lock.hcl to our gitignore for hopefully obvious reasons.
getproviders.ParsePlatform: use parts in place of slice range, since it's available
* command: Providers mirror tests
The providers mirror command is already well tested in e2e tests, so this includes only the most absolutely basic test case.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.
If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.