package module import ( "bufio" "bytes" "fmt" "log" "path/filepath" "strings" "sync" getter "github.com/hashicorp/go-getter" "github.com/hashicorp/terraform/config" ) // RootName is the name of the root tree. const RootName = "root" // Tree represents the module import tree of configurations. // // This Tree structure can be used to get (download) new modules, load // all the modules without getting, flatten the tree into something // Terraform can use, etc. type Tree struct { name string config *config.Config children map[string]*Tree path []string lock sync.RWMutex // version is the final version of the config loaded for the Tree's module version string // source is the "source" string used to load this module. It's possible // for a module source to change, but the path remains the same, preventing // it from being reloaded. source string // parent allows us to walk back up the tree and determine if there are any // versioned ancestor modules which may effect the stored location of // submodules parent *Tree } // NewTree returns a new Tree for the given config structure. func NewTree(name string, c *config.Config) *Tree { return &Tree{config: c, name: name} } // NewEmptyTree returns a new tree that is empty (contains no configuration). func NewEmptyTree() *Tree { t := &Tree{config: &config.Config{}} // We do this dummy load so that the tree is marked as "loaded". It // should never fail because this is just about a no-op. If it does fail // we panic so we can know its a bug. if err := t.Load(nil, GetModeGet); err != nil { panic(err) } return t } // NewTreeModule is like NewTree except it parses the configuration in // the directory and gives it a specific name. Use a blank name "" to specify // the root module. func NewTreeModule(name, dir string) (*Tree, error) { c, err := config.LoadDir(dir) if err != nil { return nil, err } return NewTree(name, c), nil } // Config returns the configuration for this module. func (t *Tree) Config() *config.Config { return t.config } // Child returns the child with the given path (by name). func (t *Tree) Child(path []string) *Tree { if t == nil { return nil } if len(path) == 0 { return t } c := t.Children()[path[0]] if c == nil { return nil } return c.Child(path[1:]) } // Children returns the children of this tree (the modules that are // imported by this root). // // This will only return a non-nil value after Load is called. func (t *Tree) Children() map[string]*Tree { t.lock.RLock() defer t.lock.RUnlock() return t.children } // DeepEach calls the provided callback for the receiver and then all of // its descendents in the tree, allowing an operation to be performed on // all modules in the tree. // // Parents will be visited before their children but otherwise the order is // not defined. func (t *Tree) DeepEach(cb func(*Tree)) { t.lock.RLock() defer t.lock.RUnlock() t.deepEach(cb) } func (t *Tree) deepEach(cb func(*Tree)) { cb(t) for _, c := range t.children { c.deepEach(cb) } } // Loaded says whether or not this tree has been loaded or not yet. func (t *Tree) Loaded() bool { t.lock.RLock() defer t.lock.RUnlock() return t.children != nil } // Modules returns the list of modules that this tree imports. // // This is only the imports of _this_ level of the tree. To retrieve the // full nested imports, you'll have to traverse the tree. func (t *Tree) Modules() []*Module { result := make([]*Module, len(t.config.Modules)) for i, m := range t.config.Modules { result[i] = &Module{ Name: m.Name, Version: m.Version, Source: m.Source, Providers: m.Providers, } } return result } // Name returns the name of the tree. This will be "" for the root // tree and then the module name given for any children. func (t *Tree) Name() string { if t.name == "" { return RootName } return t.name } // Load loads the configuration of the entire tree. // // The parameters are used to tell the tree where to find modules and // whether it can download/update modules along the way. // // Calling this multiple times will reload the tree. // // Various semantic-like checks are made along the way of loading since // module trees inherently require the configuration to be in a reasonably // sane state: no circular dependencies, proper module sources, etc. A full // suite of validations can be done by running Validate (after loading). func (t *Tree) Load(storage getter.Storage, mode GetMode) error { t.lock.Lock() defer t.lock.Unlock() s := newModuleStorage(storage, mode) children, err := t.getChildren(s) if err != nil { return err } // Go through all the children and load them. for _, c := range children { if err := c.Load(storage, mode); err != nil { return err } } // Set our tree up t.children = children // if we're the root module, we can now set the provider inheritance if len(t.path) == 0 { t.inheritProviderConfigs(nil) } return nil } func (t *Tree) getChildren(s moduleStorage) (map[string]*Tree, error) { children := make(map[string]*Tree) // Go through all the modules and get the directory for them. for _, m := range t.Modules() { if _, ok := children[m.Name]; ok { return nil, fmt.Errorf( "module %s: duplicated. module names must be unique", m.Name) } // Determine the path to this child path := make([]string, len(t.path), len(t.path)+1) copy(path, t.path) path = append(path, m.Name) log.Printf("[TRACE] module source: %q", m.Source) // Lookup the local location of the module. // dir is the local directory where the module is stored mod, err := s.findRegistryModule(m.Source, m.Version) if err != nil { return nil, err } // The key is the string that will be used to uniquely id the Source in // the local storage. The prefix digit can be incremented to // invalidate the local module storage. key := "1." + t.versionedPathKey(m) if mod.Version != "" { key += "." + mod.Version } // Check for the exact key if it's not a registry module if !mod.registry { mod.Dir, err = s.findModule(key) if err != nil { return nil, err } } if mod.Dir != "" { // We found it locally, but in order to load the Tree we need to // find out if there was another subDir stored from detection. subDir, err := s.getModuleRoot(mod.Dir) if err != nil { // If there's a problem with the subdir record, we'll let the // recordSubdir method fix it up. Any other filesystem errors // will turn up again below. log.Println("[WARN] error reading subdir record:", err) } else { fullDir := filepath.Join(mod.Dir, subDir) child, err := NewTreeModule(m.Name, fullDir) if err != nil { return nil, fmt.Errorf("module %s: %s", m.Name, err) } child.path = path child.parent = t child.version = mod.Version child.source = m.Source children[m.Name] = child continue } } // Split out the subdir if we have one. // Terraform keeps the entire requested tree, so that modules can // reference sibling modules from the same archive or repo. rawSource, subDir := getter.SourceDirSubdir(m.Source) // we haven't found a source, so fallback to the go-getter detectors source := mod.url if source == "" { source, err = getter.Detect(rawSource, t.config.Dir, getter.Detectors) if err != nil { return nil, fmt.Errorf("module %s: %s", m.Name, err) } } log.Printf("[TRACE] detected module source %q", source) // Check if the detector introduced something new. // For example, the registry always adds a subdir of `//*`, // indicating that we need to strip off the first component from the // tar archive, though we may not yet know what it is called. source, detectedSubDir := getter.SourceDirSubdir(source) if detectedSubDir != "" { subDir = filepath.Join(detectedSubDir, subDir) } dir, ok, err := s.getStorage(key, source) if err != nil { return nil, err } if !ok { return nil, fmt.Errorf("module %s: not found, may need to run 'terraform init'", m.Name) } log.Printf("[TRACE] %q stored in %q", source, dir) // expand and record the subDir for later fullDir := dir if subDir != "" { fullDir, err = getter.SubdirGlob(dir, subDir) if err != nil { return nil, err } // +1 to account for the pathsep if len(dir)+1 > len(fullDir) { return nil, fmt.Errorf("invalid module storage path %q", fullDir) } subDir = fullDir[len(dir)+1:] } // add new info to the module record mod.Key = key mod.Dir = dir mod.Root = subDir // record the module in our manifest if err := s.recordModule(mod); err != nil { return nil, err } child, err := NewTreeModule(m.Name, fullDir) if err != nil { return nil, fmt.Errorf("module %s: %s", m.Name, err) } child.path = path child.parent = t child.version = mod.Version child.source = m.Source children[m.Name] = child } return children, nil } // inheritProviderConfig resolves all provider config inheritance after the // tree is loaded. // // If there is a provider block without a config, look in the parent's Module // block for a provider, and fetch that provider's configuration. If that // doesn't exist, assume a default empty config. Implicit providers can still // inherit their config all the way up from the root, so walk up the tree and // copy the first matching provider into the module. func (t *Tree) inheritProviderConfigs(stack []*Tree) { // the recursive calls only append, so we don't need to worry about copying // this slice. stack = append(stack, t) for _, c := range t.children { c.inheritProviderConfigs(stack) } providers := make(map[string]*config.ProviderConfig) missingProviders := make(map[string]bool) for _, p := range t.config.ProviderConfigs { providers[p.FullName()] = p } for _, r := range t.config.Resources { p := r.ProviderFullName() if _, ok := providers[p]; !(ok || strings.Contains(p, ".")) { missingProviders[p] = true } } // Search for implicit provider configs // This adds an empty config is no inherited config is found, so that // there is always a provider config present. // This is done in the root module as well, just to set the providers. for missing := range missingProviders { // first create an empty provider config pc := &config.ProviderConfig{ Name: missing, } // walk up the stack looking for matching providers for i := len(stack) - 2; i >= 0; i-- { pt := stack[i] var parentProvider *config.ProviderConfig for _, p := range pt.config.ProviderConfigs { if p.FullName() == missing { parentProvider = p break } } if parentProvider == nil { continue } pc.Path = pt.Path() pc.Path = append([]string{RootName}, pt.path...) pc.RawConfig = parentProvider.RawConfig log.Printf("[TRACE] provider %q inheriting config from %q", strings.Join(append(t.Path(), pc.FullName()), "."), strings.Join(append(pt.Path(), parentProvider.FullName()), "."), ) break } // always set a provider config if pc.RawConfig == nil { pc.RawConfig, _ = config.NewRawConfig(map[string]interface{}{}) } t.config.ProviderConfigs = append(t.config.ProviderConfigs, pc) } // After allowing the empty implicit configs to be created in root, there's nothing left to inherit if len(stack) == 1 { return } // get our parent's module config block parent := stack[len(stack)-2] var parentModule *config.Module for _, m := range parent.config.Modules { if m.Name == t.name { parentModule = m break } } if parentModule == nil { panic("can't be a module without a parent module config") } // now look for providers that need a config for p, pc := range providers { if len(pc.RawConfig.RawMap()) > 0 { log.Printf("[TRACE] provider %q has a config, continuing", p) continue } // this provider has no config yet, check for one being passed in parentProviderName, ok := parentModule.Providers[p] if !ok { continue } var parentProvider *config.ProviderConfig // there's a config for us in the parent module for _, pp := range parent.config.ProviderConfigs { if pp.FullName() == parentProviderName { parentProvider = pp break } } if parentProvider == nil { // no config found, assume defaults continue } // Copy it in, but set an interpolation Scope. // An interpolation Scope always need to have "root" pc.Path = append([]string{RootName}, parent.path...) pc.RawConfig = parentProvider.RawConfig log.Printf("[TRACE] provider %q inheriting config from %q", strings.Join(append(t.Path(), pc.FullName()), "."), strings.Join(append(parent.Path(), parentProvider.FullName()), "."), ) } } // Path is the full path to this tree. func (t *Tree) Path() []string { return t.path } // String gives a nice output to describe the tree. func (t *Tree) String() string { var result bytes.Buffer path := strings.Join(t.path, ", ") if path != "" { path = fmt.Sprintf(" (path: %s)", path) } result.WriteString(t.Name() + path + "\n") cs := t.Children() if cs == nil { result.WriteString(" not loaded") } else { // Go through each child and get its string value, then indent it // by two. for _, c := range cs { r := strings.NewReader(c.String()) scanner := bufio.NewScanner(r) for scanner.Scan() { result.WriteString(" ") result.WriteString(scanner.Text()) result.WriteString("\n") } } } return result.String() } // Validate does semantic checks on the entire tree of configurations. // // This will call the respective config.Config.Validate() functions as well // as verifying things such as parameters/outputs between the various modules. // // Load must be called prior to calling Validate or an error will be returned. func (t *Tree) Validate() error { if !t.Loaded() { return fmt.Errorf("tree must be loaded before calling Validate") } // If something goes wrong, here is our error template newErr := &treeError{Name: []string{t.Name()}} // Terraform core does not handle root module children named "root". // We plan to fix this in the future but this bug was brought up in // the middle of a release and we don't want to introduce wide-sweeping // changes at that time. if len(t.path) == 1 && t.name == "root" { return fmt.Errorf("root module cannot contain module named 'root'") } // Validate our configuration first. if err := t.config.Validate(); err != nil { newErr.Add(err) } // If we're the root, we do extra validation. This validation usually // requires the entire tree (since children don't have parent pointers). if len(t.path) == 0 { if err := t.validateProviderAlias(); err != nil { newErr.Add(err) } } // Get the child trees children := t.Children() // Validate all our children for _, c := range children { err := c.Validate() if err == nil { continue } verr, ok := err.(*treeError) if !ok { // Unknown error, just return... return err } // Append ourselves to the error and then return verr.Name = append(verr.Name, t.Name()) newErr.AddChild(verr) } // Go over all the modules and verify that any parameters are valid // variables into the module in question. for _, m := range t.config.Modules { tree, ok := children[m.Name] if !ok { // This should never happen because Load watches us panic("module not found in children: " + m.Name) } // Build the variables that the module defines requiredMap := make(map[string]struct{}) varMap := make(map[string]struct{}) for _, v := range tree.config.Variables { varMap[v.Name] = struct{}{} if v.Required() { requiredMap[v.Name] = struct{}{} } } // Compare to the keys in our raw config for the module for k, _ := range m.RawConfig.Raw { if _, ok := varMap[k]; !ok { newErr.Add(fmt.Errorf( "module %s: %s is not a valid parameter", m.Name, k)) } // Remove the required delete(requiredMap, k) } // If we have any required left over, they aren't set. for k, _ := range requiredMap { newErr.Add(fmt.Errorf( "module %s: required variable %q not set", m.Name, k)) } } // Go over all the variables used and make sure that any module // variables represent outputs properly. for source, vs := range t.config.InterpolatedVariables() { for _, v := range vs { mv, ok := v.(*config.ModuleVariable) if !ok { continue } tree, ok := children[mv.Name] if !ok { newErr.Add(fmt.Errorf( "%s: undefined module referenced %s", source, mv.Name)) continue } found := false for _, o := range tree.config.Outputs { if o.Name == mv.Field { found = true break } } if !found { newErr.Add(fmt.Errorf( "%s: %s is not a valid output for module %s", source, mv.Field, mv.Name)) } } } return newErr.ErrOrNil() } // versionedPathKey returns a path string with every levels full name, version // and source encoded. This is to provide a unique key for our module storage, // since submodules need to know which versions of their ancestor modules they // are loaded from. func (t *Tree) versionedPathKey(m *Module) string { path := make([]string, len(t.path)+1) path[len(path)-1] = m.Name + ";" + m.Source // We're going to load these in order for easier reading and debugging, but // in practice they only need to be unique and consistent. p := t i := len(path) - 2 for ; i >= 0; i-- { if p == nil { break } // we may have been loaded under a blank Tree, so always check for a name // too. if p.name == "" { break } seg := p.name if p.version != "" { seg += "#" + p.version } if p.source != "" { seg += ";" + p.source } path[i] = seg p = p.parent } key := strings.Join(path, "|") return key } // treeError is an error use by Tree.Validate to accumulates all // validation errors. type treeError struct { Name []string Errs []error Children []*treeError } func (e *treeError) Add(err error) { e.Errs = append(e.Errs, err) } func (e *treeError) AddChild(err *treeError) { e.Children = append(e.Children, err) } func (e *treeError) ErrOrNil() error { if len(e.Errs) > 0 || len(e.Children) > 0 { return e } return nil } func (e *treeError) Error() string { name := strings.Join(e.Name, ".") var out bytes.Buffer fmt.Fprintf(&out, "module %s: ", name) if len(e.Errs) == 1 { // single like error out.WriteString(e.Errs[0].Error()) } else { // multi-line error for _, err := range e.Errs { fmt.Fprintf(&out, "\n %s", err) } } if len(e.Children) > 0 { // start the next error on a new line out.WriteString("\n ") } for _, child := range e.Children { out.WriteString(child.Error()) } return out.String() }