// Copyright (c) HashiCorp, Inc. // SPDX-License-Identifier: MPL-2.0 package terraform import ( "fmt" "log" "github.com/hashicorp/hcl/v2" "github.com/zclconf/go-cty/cty" "github.com/hashicorp/terraform/internal/addrs" "github.com/hashicorp/terraform/internal/configs" "github.com/hashicorp/terraform/internal/dag" "github.com/hashicorp/terraform/internal/instances" "github.com/hashicorp/terraform/internal/lang" "github.com/hashicorp/terraform/internal/tfdiags" ) // nodeExpandModuleVariable is the placeholder for an variable that has not yet had // its module path expanded. type nodeExpandModuleVariable struct { Addr addrs.InputVariable Module addrs.Module Config *configs.Variable Expr hcl.Expression // Planning must be set to true when building a planning graph, and must be // false when building an apply graph. Planning bool } var ( _ GraphNodeDynamicExpandable = (*nodeExpandModuleVariable)(nil) _ GraphNodeReferenceOutside = (*nodeExpandModuleVariable)(nil) _ GraphNodeReferenceable = (*nodeExpandModuleVariable)(nil) _ GraphNodeReferencer = (*nodeExpandModuleVariable)(nil) _ graphNodeTemporaryValue = (*nodeExpandModuleVariable)(nil) _ graphNodeExpandsInstances = (*nodeExpandModuleVariable)(nil) ) func (n *nodeExpandModuleVariable) expandsInstances() {} func (n *nodeExpandModuleVariable) temporaryValue() bool { return true } func (n *nodeExpandModuleVariable) DynamicExpand(ctx EvalContext) (*Graph, error) { var g Graph // If this variable has preconditions, we need to report these checks now. // // We should only do this during planning as the apply phase starts with // all the same checkable objects that were registered during the plan. var checkableAddrs addrs.Set[addrs.Checkable] if n.Planning { if checkState := ctx.Checks(); checkState.ConfigHasChecks(n.Addr.InModule(n.Module)) { checkableAddrs = addrs.MakeSet[addrs.Checkable]() } } expander := ctx.InstanceExpander() for _, module := range expander.ExpandModule(n.Module) { addr := n.Addr.Absolute(module) if checkableAddrs != nil { checkableAddrs.Add(addr) } o := &nodeModuleVariable{ Addr: addr, Config: n.Config, Expr: n.Expr, ModuleInstance: module, } g.Add(o) } addRootNodeToGraph(&g) if checkableAddrs != nil { ctx.Checks().ReportCheckableObjects(n.Addr.InModule(n.Module), checkableAddrs) } return &g, nil } func (n *nodeExpandModuleVariable) Name() string { return fmt.Sprintf("%s.%s (expand)", n.Module, n.Addr.String()) } // GraphNodeModulePath func (n *nodeExpandModuleVariable) ModulePath() addrs.Module { return n.Module } // GraphNodeReferencer func (n *nodeExpandModuleVariable) References() []*addrs.Reference { // If we have no value expression, we cannot depend on anything. if n.Expr == nil { return nil } // Variables in the root don't depend on anything, because their values // are gathered prior to the graph walk and recorded in the context. if len(n.Module) == 0 { return nil } // Otherwise, we depend on anything referenced by our value expression. // We ignore diagnostics here under the assumption that we'll re-eval // all these things later and catch them then; for our purposes here, // we only care about valid references. // // Due to our GraphNodeReferenceOutside implementation, the addresses // returned by this function are interpreted in the _parent_ module from // where our associated variable was declared, which is correct because // our value expression is assigned within a "module" block in the parent // module. refs, _ := lang.ReferencesInExpr(addrs.ParseRef, n.Expr) return refs } // GraphNodeReferenceOutside implementation func (n *nodeExpandModuleVariable) ReferenceOutside() (selfPath, referencePath addrs.Module) { return n.Module, n.Module.Parent() } // GraphNodeReferenceable func (n *nodeExpandModuleVariable) ReferenceableAddrs() []addrs.Referenceable { return []addrs.Referenceable{n.Addr} } // nodeModuleVariable represents a module variable input during // the apply step. type nodeModuleVariable struct { Addr addrs.AbsInputVariableInstance Config *configs.Variable // Config is the var in the config Expr hcl.Expression // Expr is the value expression given in the call // ModuleInstance in order to create the appropriate context for evaluating // ModuleCallArguments, ex. so count.index and each.key can resolve ModuleInstance addrs.ModuleInstance } // Ensure that we are implementing all of the interfaces we think we are // implementing. var ( _ GraphNodeModuleInstance = (*nodeModuleVariable)(nil) _ GraphNodeExecutable = (*nodeModuleVariable)(nil) _ graphNodeTemporaryValue = (*nodeModuleVariable)(nil) _ dag.GraphNodeDotter = (*nodeModuleVariable)(nil) ) func (n *nodeModuleVariable) temporaryValue() bool { return true } func (n *nodeModuleVariable) Name() string { return n.Addr.String() } // GraphNodeModuleInstance func (n *nodeModuleVariable) Path() addrs.ModuleInstance { // We execute in the parent scope (above our own module) because // expressions in our value are resolved in that context. return n.Addr.Module.Parent() } // GraphNodeModulePath func (n *nodeModuleVariable) ModulePath() addrs.Module { return n.Addr.Module.Module() } // GraphNodeExecutable func (n *nodeModuleVariable) Execute(ctx EvalContext, op walkOperation) (diags tfdiags.Diagnostics) { log.Printf("[TRACE] nodeModuleVariable: evaluating %s", n.Addr) var val cty.Value var err error switch op { case walkValidate: val, err = n.evalModuleVariable(ctx, true) diags = diags.Append(err) default: val, err = n.evalModuleVariable(ctx, false) diags = diags.Append(err) } if diags.HasErrors() { return diags } // Set values for arguments of a child module call, for later retrieval // during expression evaluation. _, call := n.Addr.Module.CallInstance() ctx.SetModuleCallArgument(call, n.Addr.Variable, val) return evalVariableValidations(n.Addr, n.Config, n.Expr, ctx) } // dag.GraphNodeDotter impl. func (n *nodeModuleVariable) DotNode(name string, opts *dag.DotOpts) *dag.DotNode { return &dag.DotNode{ Name: name, Attrs: map[string]string{ "label": n.Name(), "shape": "note", }, } } // evalModuleVariable produces the value for a particular variable as will // be used by a child module instance. // // The result is written into a map, with its key set to the local name of the // variable, disregarding the module instance address. A map is returned instead // of a single value as a result of trying to be convenient for use with // EvalContext.SetModuleCallArguments, which expects a map to merge in with any // existing arguments. // // validateOnly indicates that this evaluation is only for config // validation, and we will not have any expansion module instance // repetition data. func (n *nodeModuleVariable) evalModuleVariable(ctx EvalContext, validateOnly bool) (cty.Value, error) { var diags tfdiags.Diagnostics var givenVal cty.Value var errSourceRange tfdiags.SourceRange if expr := n.Expr; expr != nil { var moduleInstanceRepetitionData instances.RepetitionData switch { case validateOnly: // the instance expander does not track unknown expansion values, so we // have to assume all RepetitionData is unknown. moduleInstanceRepetitionData = instances.RepetitionData{ CountIndex: cty.UnknownVal(cty.Number), EachKey: cty.UnknownVal(cty.String), EachValue: cty.DynamicVal, } default: // Get the repetition data for this module instance, // so we can create the appropriate scope for evaluating our expression moduleInstanceRepetitionData = ctx.InstanceExpander().GetModuleInstanceRepetitionData(n.ModuleInstance) } scope := ctx.EvaluationScope(nil, nil, moduleInstanceRepetitionData) val, moreDiags := scope.EvalExpr(expr, cty.DynamicPseudoType) diags = diags.Append(moreDiags) if moreDiags.HasErrors() { return cty.DynamicVal, diags.ErrWithWarnings() } givenVal = val errSourceRange = tfdiags.SourceRangeFromHCL(expr.Range()) } else { // We'll use cty.NilVal to represent the variable not being set at all. givenVal = cty.NilVal errSourceRange = tfdiags.SourceRangeFromHCL(n.Config.DeclRange) // we use the declaration range as a fallback for an undefined variable } // We construct a synthetic InputValue here to pretend as if this were // a root module variable set from outside, just as a convenience so we // can reuse the InputValue type for this. rawVal := &InputValue{ Value: givenVal, SourceType: ValueFromConfig, SourceRange: errSourceRange, } finalVal, moreDiags := prepareFinalInputVariableValue(n.Addr, rawVal, n.Config) diags = diags.Append(moreDiags) return finalVal, diags.ErrWithWarnings() }