// Copyright (c) HashiCorp, Inc. // SPDX-License-Identifier: MPL-2.0 package dag import ( "flag" "fmt" "os" "reflect" "strconv" "strings" "sync" "testing" "github.com/placeholderplaceholderplaceholder/opentf/internal/tfdiags" _ "github.com/placeholderplaceholderplaceholder/opentf/internal/logging" ) func TestMain(m *testing.M) { flag.Parse() os.Exit(m.Run()) } func TestAcyclicGraphRoot(t *testing.T) { var g AcyclicGraph g.Add(1) g.Add(2) g.Add(3) g.Connect(BasicEdge(3, 2)) g.Connect(BasicEdge(3, 1)) if root, err := g.Root(); err != nil { t.Fatalf("err: %s", err) } else if root != 3 { t.Fatalf("bad: %#v", root) } } func TestAcyclicGraphRoot_cycle(t *testing.T) { var g AcyclicGraph g.Add(1) g.Add(2) g.Add(3) g.Connect(BasicEdge(1, 2)) g.Connect(BasicEdge(2, 3)) g.Connect(BasicEdge(3, 1)) if _, err := g.Root(); err == nil { t.Fatal("should error") } } func TestAcyclicGraphRoot_multiple(t *testing.T) { var g AcyclicGraph g.Add(1) g.Add(2) g.Add(3) g.Connect(BasicEdge(3, 2)) if _, err := g.Root(); err == nil { t.Fatal("should error") } } func TestAyclicGraphTransReduction(t *testing.T) { var g AcyclicGraph g.Add(1) g.Add(2) g.Add(3) g.Connect(BasicEdge(1, 2)) g.Connect(BasicEdge(1, 3)) g.Connect(BasicEdge(2, 3)) g.TransitiveReduction() actual := strings.TrimSpace(g.String()) expected := strings.TrimSpace(testGraphTransReductionStr) if actual != expected { t.Fatalf("bad: %s", actual) } } func TestAyclicGraphTransReduction_more(t *testing.T) { var g AcyclicGraph g.Add(1) g.Add(2) g.Add(3) g.Add(4) g.Connect(BasicEdge(1, 2)) g.Connect(BasicEdge(1, 3)) g.Connect(BasicEdge(1, 4)) g.Connect(BasicEdge(2, 3)) g.Connect(BasicEdge(2, 4)) g.Connect(BasicEdge(3, 4)) g.TransitiveReduction() actual := strings.TrimSpace(g.String()) expected := strings.TrimSpace(testGraphTransReductionMoreStr) if actual != expected { t.Fatalf("bad: %s", actual) } } func TestAyclicGraphTransReduction_multipleRoots(t *testing.T) { var g AcyclicGraph g.Add(1) g.Add(2) g.Add(3) g.Add(4) g.Connect(BasicEdge(1, 2)) g.Connect(BasicEdge(1, 3)) g.Connect(BasicEdge(1, 4)) g.Connect(BasicEdge(2, 3)) g.Connect(BasicEdge(2, 4)) g.Connect(BasicEdge(3, 4)) g.Add(5) g.Add(6) g.Add(7) g.Add(8) g.Connect(BasicEdge(5, 6)) g.Connect(BasicEdge(5, 7)) g.Connect(BasicEdge(5, 8)) g.Connect(BasicEdge(6, 7)) g.Connect(BasicEdge(6, 8)) g.Connect(BasicEdge(7, 8)) g.TransitiveReduction() actual := strings.TrimSpace(g.String()) expected := strings.TrimSpace(testGraphTransReductionMultipleRootsStr) if actual != expected { t.Fatalf("bad: %s", actual) } } // use this to simulate slow sort operations type counter struct { Name string Calls int64 } func (s *counter) String() string { s.Calls++ return s.Name } // Make sure we can reduce a sizable, fully-connected graph. func TestAyclicGraphTransReduction_fullyConnected(t *testing.T) { var g AcyclicGraph const nodeCount = 200 nodes := make([]*counter, nodeCount) for i := 0; i < nodeCount; i++ { nodes[i] = &counter{Name: strconv.Itoa(i)} } // Add them all to the graph for _, n := range nodes { g.Add(n) } // connect them all for i := range nodes { for j := range nodes { if i == j { continue } g.Connect(BasicEdge(nodes[i], nodes[j])) } } g.TransitiveReduction() vertexNameCalls := int64(0) for _, n := range nodes { vertexNameCalls += n.Calls } switch { case vertexNameCalls > 2*nodeCount: // Make calling it more the 2x per node fatal. // If we were sorting this would give us roughly ln(n)(n^3) calls, or // >59000000 calls for 200 vertices. t.Fatalf("VertexName called %d times", vertexNameCalls) case vertexNameCalls > 0: // we don't expect any calls, but a change here isn't necessarily fatal t.Logf("WARNING: VertexName called %d times", vertexNameCalls) } } func TestAcyclicGraphValidate(t *testing.T) { var g AcyclicGraph g.Add(1) g.Add(2) g.Add(3) g.Connect(BasicEdge(3, 2)) g.Connect(BasicEdge(3, 1)) if err := g.Validate(); err != nil { t.Fatalf("err: %s", err) } } func TestAcyclicGraphValidate_cycle(t *testing.T) { var g AcyclicGraph g.Add(1) g.Add(2) g.Add(3) g.Connect(BasicEdge(3, 2)) g.Connect(BasicEdge(3, 1)) g.Connect(BasicEdge(1, 2)) g.Connect(BasicEdge(2, 1)) if err := g.Validate(); err == nil { t.Fatal("should error") } } func TestAcyclicGraphValidate_cycleSelf(t *testing.T) { var g AcyclicGraph g.Add(1) g.Add(2) g.Connect(BasicEdge(1, 1)) if err := g.Validate(); err == nil { t.Fatal("should error") } } func TestAcyclicGraphAncestors(t *testing.T) { var g AcyclicGraph g.Add(1) g.Add(2) g.Add(3) g.Add(4) g.Add(5) g.Connect(BasicEdge(0, 1)) g.Connect(BasicEdge(1, 2)) g.Connect(BasicEdge(2, 3)) g.Connect(BasicEdge(3, 4)) g.Connect(BasicEdge(4, 5)) actual, err := g.Ancestors(2) if err != nil { t.Fatalf("err: %#v", err) } expected := []Vertex{3, 4, 5} if actual.Len() != len(expected) { t.Fatalf("bad length! expected %#v to have len %d", actual, len(expected)) } for _, e := range expected { if !actual.Include(e) { t.Fatalf("expected: %#v to include: %#v", expected, actual) } } } func TestAcyclicGraphDescendents(t *testing.T) { var g AcyclicGraph g.Add(1) g.Add(2) g.Add(3) g.Add(4) g.Add(5) g.Connect(BasicEdge(0, 1)) g.Connect(BasicEdge(1, 2)) g.Connect(BasicEdge(2, 3)) g.Connect(BasicEdge(3, 4)) g.Connect(BasicEdge(4, 5)) actual, err := g.Descendents(2) if err != nil { t.Fatalf("err: %#v", err) } expected := []Vertex{0, 1} if actual.Len() != len(expected) { t.Fatalf("bad length! expected %#v to have len %d", actual, len(expected)) } for _, e := range expected { if !actual.Include(e) { t.Fatalf("expected: %#v to include: %#v", expected, actual) } } } func TestAcyclicGraphWalk(t *testing.T) { var g AcyclicGraph g.Add(1) g.Add(2) g.Add(3) g.Connect(BasicEdge(3, 2)) g.Connect(BasicEdge(3, 1)) var visits []Vertex var lock sync.Mutex err := g.Walk(func(v Vertex) tfdiags.Diagnostics { lock.Lock() defer lock.Unlock() visits = append(visits, v) return nil }) if err != nil { t.Fatalf("err: %s", err) } expected := [][]Vertex{ {1, 2, 3}, {2, 1, 3}, } for _, e := range expected { if reflect.DeepEqual(visits, e) { return } } t.Fatalf("bad: %#v", visits) } func TestAcyclicGraphWalk_error(t *testing.T) { var g AcyclicGraph g.Add(1) g.Add(2) g.Add(3) g.Add(4) g.Connect(BasicEdge(4, 3)) g.Connect(BasicEdge(3, 2)) g.Connect(BasicEdge(2, 1)) var visits []Vertex var lock sync.Mutex err := g.Walk(func(v Vertex) tfdiags.Diagnostics { lock.Lock() defer lock.Unlock() var diags tfdiags.Diagnostics if v == 2 { diags = diags.Append(fmt.Errorf("error")) return diags } visits = append(visits, v) return diags }) if err == nil { t.Fatal("should error") } expected := []Vertex{1} if !reflect.DeepEqual(visits, expected) { t.Errorf("wrong visits\ngot: %#v\nwant: %#v", visits, expected) } } func BenchmarkDAG(b *testing.B) { for i := 0; i < b.N; i++ { count := 150 b.StopTimer() g := &AcyclicGraph{} // create 4 layers of fully connected nodes // layer A for i := 0; i < count; i++ { g.Add(fmt.Sprintf("A%d", i)) } // layer B for i := 0; i < count; i++ { B := fmt.Sprintf("B%d", i) g.Add(B) for j := 0; j < count; j++ { g.Connect(BasicEdge(B, fmt.Sprintf("A%d", j))) } } // layer C for i := 0; i < count; i++ { c := fmt.Sprintf("C%d", i) g.Add(c) for j := 0; j < count; j++ { // connect them to previous layers so we have something that requires reduction g.Connect(BasicEdge(c, fmt.Sprintf("A%d", j))) g.Connect(BasicEdge(c, fmt.Sprintf("B%d", j))) } } // layer D for i := 0; i < count; i++ { d := fmt.Sprintf("D%d", i) g.Add(d) for j := 0; j < count; j++ { g.Connect(BasicEdge(d, fmt.Sprintf("A%d", j))) g.Connect(BasicEdge(d, fmt.Sprintf("B%d", j))) g.Connect(BasicEdge(d, fmt.Sprintf("C%d", j))) } } b.StartTimer() // Find dependencies for every node for _, v := range g.Vertices() { _, err := g.Ancestors(v) if err != nil { b.Fatal(err) } } // reduce the final graph g.TransitiveReduction() } } func TestAcyclicGraphWalkOrder(t *testing.T) { /* Sample dependency graph, all edges pointing downwards. 1 2 / \ / \ 3 4 5 / \ / 6 7 / | \ 8 9 10 \ | / 11 */ var g AcyclicGraph for i := 1; i <= 11; i++ { g.Add(i) } g.Connect(BasicEdge(1, 3)) g.Connect(BasicEdge(1, 4)) g.Connect(BasicEdge(2, 4)) g.Connect(BasicEdge(2, 5)) g.Connect(BasicEdge(3, 6)) g.Connect(BasicEdge(4, 7)) g.Connect(BasicEdge(5, 7)) g.Connect(BasicEdge(7, 8)) g.Connect(BasicEdge(7, 9)) g.Connect(BasicEdge(7, 10)) g.Connect(BasicEdge(8, 11)) g.Connect(BasicEdge(9, 11)) g.Connect(BasicEdge(10, 11)) start := make(Set) start.Add(2) start.Add(1) reverse := make(Set) reverse.Add(11) reverse.Add(6) t.Run("DepthFirst", func(t *testing.T) { var visits []vertexAtDepth g.walk(depthFirst|downOrder, true, start, func(v Vertex, d int) error { visits = append(visits, vertexAtDepth{v, d}) return nil }) expect := []vertexAtDepth{ {2, 0}, {5, 1}, {7, 2}, {9, 3}, {11, 4}, {8, 3}, {10, 3}, {4, 1}, {1, 0}, {3, 1}, {6, 2}, } if !reflect.DeepEqual(visits, expect) { t.Errorf("expected visits:\n%v\ngot:\n%v\n", expect, visits) } }) t.Run("ReverseDepthFirst", func(t *testing.T) { var visits []vertexAtDepth g.walk(depthFirst|upOrder, true, reverse, func(v Vertex, d int) error { visits = append(visits, vertexAtDepth{v, d}) return nil }) expect := []vertexAtDepth{ {6, 0}, {3, 1}, {1, 2}, {11, 0}, {9, 1}, {7, 2}, {5, 3}, {2, 4}, {4, 3}, {8, 1}, {10, 1}, } if !reflect.DeepEqual(visits, expect) { t.Errorf("expected visits:\n%v\ngot:\n%v\n", expect, visits) } }) t.Run("BreadthFirst", func(t *testing.T) { var visits []vertexAtDepth g.walk(breadthFirst|downOrder, true, start, func(v Vertex, d int) error { visits = append(visits, vertexAtDepth{v, d}) return nil }) expect := []vertexAtDepth{ {1, 0}, {2, 0}, {3, 1}, {4, 1}, {5, 1}, {6, 2}, {7, 2}, {10, 3}, {8, 3}, {9, 3}, {11, 4}, } if !reflect.DeepEqual(visits, expect) { t.Errorf("expected visits:\n%v\ngot:\n%v\n", expect, visits) } }) t.Run("ReverseBreadthFirst", func(t *testing.T) { var visits []vertexAtDepth g.walk(breadthFirst|upOrder, true, reverse, func(v Vertex, d int) error { visits = append(visits, vertexAtDepth{v, d}) return nil }) expect := []vertexAtDepth{ {11, 0}, {6, 0}, {10, 1}, {8, 1}, {9, 1}, {3, 1}, {7, 2}, {1, 2}, {4, 3}, {5, 3}, {2, 4}, } if !reflect.DeepEqual(visits, expect) { t.Errorf("expected visits:\n%v\ngot:\n%v\n", expect, visits) } }) t.Run("TopologicalOrder", func(t *testing.T) { order := g.topoOrder(downOrder) // Validate the order by checking it against the initial graph. We only // need to verify that each node has it's direct dependencies // satisfied. completed := map[Vertex]bool{} for _, v := range order { deps := g.DownEdges(v) for _, dep := range deps { if !completed[dep] { t.Fatalf("walking node %v, but dependency %v was not yet seen", v, dep) } } completed[v] = true } }) t.Run("ReverseTopologicalOrder", func(t *testing.T) { order := g.topoOrder(upOrder) // Validate the order by checking it against the initial graph. We only // need to verify that each node has it's direct dependencies // satisfied. completed := map[Vertex]bool{} for _, v := range order { deps := g.UpEdges(v) for _, dep := range deps { if !completed[dep] { t.Fatalf("walking node %v, but dependency %v was not yet seen", v, dep) } } completed[v] = true } }) } const testGraphTransReductionStr = ` 1 2 2 3 3 ` const testGraphTransReductionMoreStr = ` 1 2 2 3 3 4 4 ` const testGraphTransReductionMultipleRootsStr = ` 1 2 2 3 3 4 4 5 6 6 7 7 8 8 `