package terraform import ( "bytes" "context" "fmt" "log" "strings" "sync" "github.com/hashicorp/hcl" "github.com/zclconf/go-cty/cty" "github.com/hashicorp/terraform/addrs" "github.com/hashicorp/terraform/config" "github.com/hashicorp/terraform/configs" "github.com/hashicorp/terraform/lang" "github.com/hashicorp/terraform/plans" "github.com/hashicorp/terraform/providers" "github.com/hashicorp/terraform/provisioners" "github.com/hashicorp/terraform/states" "github.com/hashicorp/terraform/states/statefile" "github.com/hashicorp/terraform/tfdiags" ) // InputMode defines what sort of input will be asked for when Input // is called on Context. type InputMode byte const ( // InputModeVar asks for all variables InputModeVar InputMode = 1 << iota // InputModeVarUnset asks for variables which are not set yet. // InputModeVar must be set for this to have an effect. InputModeVarUnset // InputModeProvider asks for provider variables InputModeProvider // InputModeStd is the standard operating mode and asks for both variables // and providers. InputModeStd = InputModeVar | InputModeProvider ) var ( // contextFailOnShadowError will cause Context operations to return // errors when shadow operations fail. This is only used for testing. contextFailOnShadowError = false // contextTestDeepCopyOnPlan will perform a Diff DeepCopy on every // Plan operation, effectively testing the Diff DeepCopy whenever // a Plan occurs. This is enabled for tests. contextTestDeepCopyOnPlan = false ) // ContextOpts are the user-configurable options to create a context with // NewContext. type ContextOpts struct { Config *configs.Config Changes *plans.Changes State *states.State Targets []addrs.Targetable Variables InputValues Meta *ContextMeta Destroy bool Hooks []Hook Parallelism int ProviderResolver providers.Resolver Provisioners map[string]ProvisionerFactory // If non-nil, will apply as additional constraints on the provider // plugins that will be requested from the provider resolver. ProviderSHA256s map[string][]byte SkipProviderVerify bool UIInput UIInput } // ContextMeta is metadata about the running context. This is information // that this package or structure cannot determine on its own but exposes // into Terraform in various ways. This must be provided by the Context // initializer. type ContextMeta struct { Env string // Env is the state environment } // Context represents all the context that Terraform needs in order to // perform operations on infrastructure. This structure is built using // NewContext. type Context struct { config *configs.Config changes *plans.Changes state *states.State targets []addrs.Targetable variables InputValues meta *ContextMeta destroy bool hooks []Hook components contextComponentFactory schemas *Schemas sh *stopHook uiInput UIInput l sync.Mutex // Lock acquired during any task parallelSem Semaphore providerInputConfig map[string]map[string]cty.Value providerSHA256s map[string][]byte runLock sync.Mutex runCond *sync.Cond runContext context.Context runContextCancel context.CancelFunc shadowErr error } // (additional methods on Context can be found in context_*.go files.) // NewContext creates a new Context structure. // // Once a Context is created, the caller must not access or mutate any of // the objects referenced (directly or indirectly) by the ContextOpts fields. // // If the returned diagnostics contains errors then the resulting context is // invalid and must not be used. func NewContext(opts *ContextOpts) (*Context, tfdiags.Diagnostics) { log.Printf("[TRACE] terraform.NewContext: starting") diags := CheckCoreVersionRequirements(opts.Config) // If version constraints are not met then we'll bail early since otherwise // we're likely to just see a bunch of other errors related to // incompatibilities, which could be overwhelming for the user. if diags.HasErrors() { return nil, diags } // Copy all the hooks and add our stop hook. We don't append directly // to the Config so that we're not modifying that in-place. sh := new(stopHook) hooks := make([]Hook, len(opts.Hooks)+1) copy(hooks, opts.Hooks) hooks[len(opts.Hooks)] = sh state := opts.State if state == nil { state = states.NewState() } // Determine parallelism, default to 10. We do this both to limit // CPU pressure but also to have an extra guard against rate throttling // from providers. par := opts.Parallelism if par == 0 { par = 10 } // Set up the variables in the following sequence: // 0 - Take default values from the configuration // 1 - Take values from TF_VAR_x environment variables // 2 - Take values specified in -var flags, overriding values // set by environment variables if necessary. This includes // values taken from -var-file in addition. var variables InputValues if opts.Config != nil { // Default variables from the configuration seed our map. variables = DefaultVariableValues(opts.Config.Module.Variables) } // Variables provided by the caller (from CLI, environment, etc) can // override the defaults. variables = variables.Override(opts.Variables) // Bind available provider plugins to the constraints in config var providerFactories map[string]providers.Factory if opts.ProviderResolver != nil { var err error deps := ConfigTreeDependencies(opts.Config, state) reqd := deps.AllPluginRequirements() if opts.ProviderSHA256s != nil && !opts.SkipProviderVerify { reqd.LockExecutables(opts.ProviderSHA256s) } log.Printf("[TRACE] terraform.NewContext: resolving provider version selections") providerFactories, err = resourceProviderFactories(opts.ProviderResolver, reqd) if err != nil { diags = diags.Append(err) return nil, diags } } else { providerFactories = make(map[string]providers.Factory) } components := &basicComponentFactory{ providers: providerFactories, provisioners: opts.Provisioners, } log.Printf("[TRACE] terraform.NewContext: loading provider schemas") schemas, err := LoadSchemas(opts.Config, opts.State, components) if err != nil { diags = diags.Append(err) return nil, diags } changes := opts.Changes if changes == nil { changes = plans.NewChanges() } config := opts.Config if config == nil { config = configs.NewEmptyConfig() } log.Printf("[TRACE] terraform.NewContext: complete") return &Context{ components: components, schemas: schemas, destroy: opts.Destroy, changes: changes, hooks: hooks, meta: opts.Meta, config: config, state: state, targets: opts.Targets, uiInput: opts.UIInput, variables: variables, parallelSem: NewSemaphore(par), providerInputConfig: make(map[string]map[string]cty.Value), providerSHA256s: opts.ProviderSHA256s, sh: sh, }, nil } func (c *Context) Schemas() *Schemas { return c.schemas } type ContextGraphOpts struct { // If true, validates the graph structure (checks for cycles). Validate bool // Legacy graphs only: won't prune the graph Verbose bool } // Graph returns the graph used for the given operation type. // // The most extensive or complex graph type is GraphTypePlan. func (c *Context) Graph(typ GraphType, opts *ContextGraphOpts) (*Graph, tfdiags.Diagnostics) { if opts == nil { opts = &ContextGraphOpts{Validate: true} } log.Printf("[INFO] terraform: building graph: %s", typ) switch typ { case GraphTypeApply: return (&ApplyGraphBuilder{ Config: c.config, Changes: c.changes, State: c.state, Components: c.components, Schemas: c.schemas, Targets: c.targets, Destroy: c.destroy, Validate: opts.Validate, }).Build(addrs.RootModuleInstance) case GraphTypeValidate: // The validate graph is just a slightly modified plan graph fallthrough case GraphTypePlan: // Create the plan graph builder p := &PlanGraphBuilder{ Config: c.config, State: c.state, Components: c.components, Schemas: c.schemas, Targets: c.targets, Validate: opts.Validate, } // Some special cases for other graph types shared with plan currently var b GraphBuilder = p switch typ { case GraphTypeValidate: b = ValidateGraphBuilder(p) } return b.Build(addrs.RootModuleInstance) case GraphTypePlanDestroy: return (&DestroyPlanGraphBuilder{ Config: c.config, State: c.state, Components: c.components, Schemas: c.schemas, Targets: c.targets, Validate: opts.Validate, }).Build(addrs.RootModuleInstance) case GraphTypeRefresh: return (&RefreshGraphBuilder{ Config: c.config, State: c.state, Components: c.components, Schemas: c.schemas, Targets: c.targets, Validate: opts.Validate, }).Build(addrs.RootModuleInstance) case GraphTypeEval: return (&EvalGraphBuilder{ Config: c.config, State: c.state, Components: c.components, Schemas: c.schemas, }).Build(addrs.RootModuleInstance) default: // Should never happen, because the above is exhaustive for all graph types. panic(fmt.Errorf("unsupported graph type %s", typ)) } } // ShadowError returns any errors caught during a shadow operation. // // A shadow operation is an operation run in parallel to a real operation // that performs the same tasks using new logic on copied state. The results // are compared to ensure that the new logic works the same as the old logic. // The shadow never affects the real operation or return values. // // The result of the shadow operation are only available through this function // call after a real operation is complete. // // For API consumers of Context, you can safely ignore this function // completely if you have no interest in helping report experimental feature // errors to Terraform maintainers. Otherwise, please call this function // after every operation and report this to the user. // // IMPORTANT: Shadow errors are _never_ critical: they _never_ affect // the real state or result of a real operation. They are purely informational // to assist in future Terraform versions being more stable. Please message // this effectively to the end user. // // This must be called only when no other operation is running (refresh, // plan, etc.). The result can be used in parallel to any other operation // running. func (c *Context) ShadowError() error { return c.shadowErr } // State returns a copy of the current state associated with this context. // // This cannot safely be called in parallel with any other Context function. func (c *Context) State() *states.State { return c.state.DeepCopy() } // Eval produces a scope in which expressions can be evaluated for // the given module path. // // This method must first evaluate any ephemeral values (input variables, local // values, and output values) in the configuration. These ephemeral values are // not included in the persisted state, so they must be re-computed using other // values in the state before they can be properly evaluated. The updated // values are retained in the main state associated with the receiving context. // // This function takes no action against remote APIs but it does need access // to all provider and provisioner instances in order to obtain their schemas // for type checking. // // The result is an evaluation scope that can be used to resolve references // against the root module. If the returned diagnostics contains errors then // the returned scope may be nil. If it is not nil then it may still be used // to attempt expression evaluation or other analysis, but some expressions // may not behave as expected. func (c *Context) Eval(path addrs.ModuleInstance) (*lang.Scope, tfdiags.Diagnostics) { // This is intended for external callers such as the "terraform console" // command. Internally, we create an evaluator in c.walk before walking // the graph, and create scopes in ContextGraphWalker. var diags tfdiags.Diagnostics defer c.acquireRun("eval")() // Start with a copy of state so that we don't affect any instances // that other methods may have already returned. c.state = c.state.DeepCopy() var walker *ContextGraphWalker graph, graphDiags := c.Graph(GraphTypeEval, nil) diags = diags.Append(graphDiags) if !diags.HasErrors() { var walkDiags tfdiags.Diagnostics walker, walkDiags = c.walk(graph, walkEval) diags = diags.Append(walker.NonFatalDiagnostics) diags = diags.Append(walkDiags) } if walker == nil { // If we skipped walking the graph (due to errors) then we'll just // use a placeholder graph walker here, which'll refer to the // unmodified state. walker = c.graphWalker(walkEval) } // This is a bit weird since we don't normally evaluate outside of // the context of a walk, but we'll "re-enter" our desired path here // just to get hold of an EvalContext for it. GraphContextBuiltin // caches its contexts, so we should get hold of the context that was // previously used for evaluation here, unless we skipped walking. evalCtx := walker.EnterPath(path) return evalCtx.EvaluationScope(nil, EvalDataForNoInstanceKey), diags } // Interpolater is no longer used. Use Evaluator instead. // // The interpolator returned from this function will return an error on any use. func (c *Context) Interpolater() *Interpolater { // FIXME: Remove this once all callers are updated to no longer use it. return &Interpolater{} } // Apply applies the changes represented by this context and returns // the resulting state. // // Even in the case an error is returned, the state may be returned and will // potentially be partially updated. In addition to returning the resulting // state, this context is updated with the latest state. // // If the state is required after an error, the caller should call // Context.State, rather than rely on the return value. // // TODO: Apply and Refresh should either always return a state, or rely on the // State() method. Currently the helper/resource testing framework relies // on the absence of a returned state to determine if Destroy can be // called, so that will need to be refactored before this can be changed. func (c *Context) Apply() (*states.State, tfdiags.Diagnostics) { defer c.acquireRun("apply")() // Copy our own state c.state = c.state.DeepCopy() // Build the graph. graph, diags := c.Graph(GraphTypeApply, nil) if diags.HasErrors() { return nil, diags } // Determine the operation operation := walkApply if c.destroy { operation = walkDestroy } // Walk the graph walker, walkDiags := c.walk(graph, operation) diags = diags.Append(walker.NonFatalDiagnostics) diags = diags.Append(walkDiags) if c.destroy && !diags.HasErrors() { // If we know we were trying to destroy objects anyway, and we // completed without any errors, then we'll also prune out any // leftover empty resource husks (left after all of the instances // of a resource with "count" or "for_each" are destroyed) to // help ensure we end up with an _actually_ empty state, assuming // we weren't destroying with -target here. // // (This doesn't actually take into account -target, but that should // be okay because it doesn't throw away anything we can't recompute // on a subsequent "terraform plan" run, if the resources are still // present in the configuration. However, this _will_ cause "count = 0" // resources to read as unknown during the next refresh walk, which // may cause some additional churn if used in a data resource or // provider block, until we remove refreshing as a separate walk and // just do it as part of the plan walk.) c.state.PruneResourceHusks() } return c.state, diags } // Plan generates an execution plan for the given context. // // The execution plan encapsulates the context and can be stored // in order to reinstantiate a context later for Apply. // // Plan also updates the diff of this context to be the diff generated // by the plan, so Apply can be called after. func (c *Context) Plan() (*plans.Plan, tfdiags.Diagnostics) { defer c.acquireRun("plan")() c.changes = plans.NewChanges() var diags tfdiags.Diagnostics varVals := make(map[string]plans.DynamicValue, len(c.variables)) for k, iv := range c.variables { // We use cty.DynamicPseudoType here so that we'll save both the // value _and_ its dynamic type in the plan, so we can recover // exactly the same value later. dv, err := plans.NewDynamicValue(iv.Value, cty.DynamicPseudoType) if err != nil { diags = diags.Append(tfdiags.Sourceless( tfdiags.Error, "Failed to prepare variable value for plan", fmt.Sprintf("The value for variable %q could not be serialized to store in the plan: %s.", k, err), )) continue } varVals[k] = dv } p := &plans.Plan{ VariableValues: varVals, TargetAddrs: c.targets, ProviderSHA256s: c.providerSHA256s, } var operation walkOperation if c.destroy { operation = walkPlanDestroy } else { // Set our state to be something temporary. We do this so that // the plan can update a fake state so that variables work, then // we replace it back with our old state. old := c.state if old == nil { c.state = states.NewState() } else { c.state = old.DeepCopy() } defer func() { c.state = old }() operation = walkPlan } // Build the graph. graphType := GraphTypePlan if c.destroy { graphType = GraphTypePlanDestroy } graph, graphDiags := c.Graph(graphType, nil) diags = diags.Append(graphDiags) if graphDiags.HasErrors() { return nil, diags } // Do the walk walker, walkDiags := c.walk(graph, operation) diags = diags.Append(walker.NonFatalDiagnostics) diags = diags.Append(walkDiags) if walkDiags.HasErrors() { return nil, diags } p.Changes = c.changes return p, diags } // Refresh goes through all the resources in the state and refreshes them // to their latest state. This will update the state that this context // works with, along with returning it. // // Even in the case an error is returned, the state may be returned and // will potentially be partially updated. func (c *Context) Refresh() (*states.State, tfdiags.Diagnostics) { defer c.acquireRun("refresh")() // Copy our own state c.state = c.state.DeepCopy() // Refresh builds a partial changeset as part of its work because it must // create placeholder stubs for any resource instances that'll be created // in subsequent plan so that provider configurations and data resources // can interpolate from them. This plan is always thrown away after // the operation completes, restoring any existing changeset. oldChanges := c.changes defer func() { c.changes = oldChanges }() c.changes = plans.NewChanges() // Build the graph. graph, diags := c.Graph(GraphTypeRefresh, nil) if diags.HasErrors() { return nil, diags } // Do the walk _, walkDiags := c.walk(graph, walkRefresh) diags = diags.Append(walkDiags) if walkDiags.HasErrors() { return nil, diags } // During our walk we will have created planned object placeholders in // state for resource instances that are in configuration but not yet // created. These were created only to allow expression evaluation to // work properly in provider and data blocks during the walk and must // now be discarded, since a subsequent plan walk is responsible for // creating these "for real". // TODO: Consolidate refresh and plan into a single walk, so that the // refresh walk doesn't need to emulate various aspects of the plan // walk in order to properly evaluate provider and data blocks. c.state.SyncWrapper().RemovePlannedResourceInstanceObjects() return c.state, diags } // Stop stops the running task. // // Stop will block until the task completes. func (c *Context) Stop() { log.Printf("[WARN] terraform: Stop called, initiating interrupt sequence") c.l.Lock() defer c.l.Unlock() // If we're running, then stop if c.runContextCancel != nil { log.Printf("[WARN] terraform: run context exists, stopping") // Tell the hook we want to stop c.sh.Stop() // Stop the context c.runContextCancel() c.runContextCancel = nil } // Grab the condition var before we exit if cond := c.runCond; cond != nil { log.Printf("[INFO] terraform: waiting for graceful stop to complete") cond.Wait() } log.Printf("[WARN] terraform: stop complete") } // Validate performs semantic validation of the configuration, and returning // any warnings or errors. // // Syntax and structural checks are performed by the configuration loader, // and so are not repeated here. func (c *Context) Validate() tfdiags.Diagnostics { defer c.acquireRun("validate")() var diags tfdiags.Diagnostics // Validate input variables. We do this only for the values supplied // by the root module, since child module calls are validated when we // visit their graph nodes. if c.config != nil { varDiags := checkInputVariables(c.config.Module.Variables, c.variables) diags = diags.Append(varDiags) } // If we have errors at this point then we probably won't be able to // construct a graph without producing redundant errors, so we'll halt early. if diags.HasErrors() { return diags } // Build the graph so we can walk it and run Validate on nodes. // We also validate the graph generated here, but this graph doesn't // necessarily match the graph that Plan will generate, so we'll validate the // graph again later after Planning. graph, graphDiags := c.Graph(GraphTypeValidate, nil) diags = diags.Append(graphDiags) if graphDiags.HasErrors() { return diags } // Walk walker, walkDiags := c.walk(graph, walkValidate) diags = diags.Append(walker.NonFatalDiagnostics) diags = diags.Append(walkDiags) if walkDiags.HasErrors() { return diags } return diags } // Config returns the configuration tree associated with this context. func (c *Context) Config() *configs.Config { return c.config } // Variables will return the mapping of variables that were defined // for this Context. If Input was called, this mapping may be different // than what was given. func (c *Context) Variables() InputValues { return c.variables } // SetVariable sets a variable after a context has already been built. func (c *Context) SetVariable(k string, v cty.Value) { c.variables[k] = &InputValue{ Value: v, SourceType: ValueFromCaller, } } func (c *Context) acquireRun(phase string) func() { // With the run lock held, grab the context lock to make changes // to the run context. c.l.Lock() defer c.l.Unlock() // Wait until we're no longer running for c.runCond != nil { c.runCond.Wait() } // Build our lock c.runCond = sync.NewCond(&c.l) // Create a new run context c.runContext, c.runContextCancel = context.WithCancel(context.Background()) // Reset the stop hook so we're not stopped c.sh.Reset() // Reset the shadow errors c.shadowErr = nil return c.releaseRun } func (c *Context) releaseRun() { // Grab the context lock so that we can make modifications to fields c.l.Lock() defer c.l.Unlock() // End our run. We check if runContext is non-nil because it can be // set to nil if it was cancelled via Stop() if c.runContextCancel != nil { c.runContextCancel() } // Unlock all waiting our condition cond := c.runCond c.runCond = nil cond.Broadcast() // Unset the context c.runContext = nil } func (c *Context) walk(graph *Graph, operation walkOperation) (*ContextGraphWalker, tfdiags.Diagnostics) { log.Printf("[DEBUG] Starting graph walk: %s", operation.String()) walker := c.graphWalker(operation) // Watch for a stop so we can call the provider Stop() API. watchStop, watchWait := c.watchStop(walker) // Walk the real graph, this will block until it completes diags := graph.Walk(walker) // Close the channel so the watcher stops, and wait for it to return. close(watchStop) <-watchWait return walker, diags } func (c *Context) graphWalker(operation walkOperation) *ContextGraphWalker { return &ContextGraphWalker{ Context: c, State: c.state.SyncWrapper(), Changes: c.changes.SyncWrapper(), Operation: operation, StopContext: c.runContext, RootVariableValues: c.variables, } } // watchStop immediately returns a `stop` and a `wait` chan after dispatching // the watchStop goroutine. This will watch the runContext for cancellation and // stop the providers accordingly. When the watch is no longer needed, the // `stop` chan should be closed before waiting on the `wait` chan. // The `wait` chan is important, because without synchronizing with the end of // the watchStop goroutine, the runContext may also be closed during the select // incorrectly causing providers to be stopped. Even if the graph walk is done // at that point, stopping a provider permanently cancels its StopContext which // can cause later actions to fail. func (c *Context) watchStop(walker *ContextGraphWalker) (chan struct{}, <-chan struct{}) { stop := make(chan struct{}) wait := make(chan struct{}) // get the runContext cancellation channel now, because releaseRun will // write to the runContext field. done := c.runContext.Done() go func() { defer close(wait) // Wait for a stop or completion select { case <-done: // done means the context was canceled, so we need to try and stop // providers. case <-stop: // our own stop channel was closed. return } // If we're here, we're stopped, trigger the call. log.Printf("[TRACE] Context: requesting providers and provisioners to gracefully stop") { // Copy the providers so that a misbehaved blocking Stop doesn't // completely hang Terraform. walker.providerLock.Lock() ps := make([]providers.Interface, 0, len(walker.providerCache)) for _, p := range walker.providerCache { ps = append(ps, p) } defer walker.providerLock.Unlock() for _, p := range ps { // We ignore the error for now since there isn't any reasonable // action to take if there is an error here, since the stop is still // advisory: Terraform will exit once the graph node completes. p.Stop() } } { // Call stop on all the provisioners walker.provisionerLock.Lock() ps := make([]provisioners.Interface, 0, len(walker.provisionerCache)) for _, p := range walker.provisionerCache { ps = append(ps, p) } defer walker.provisionerLock.Unlock() for _, p := range ps { // We ignore the error for now since there isn't any reasonable // action to take if there is an error here, since the stop is still // advisory: Terraform will exit once the graph node completes. p.Stop() } } }() return stop, wait } // parseVariableAsHCL parses the value of a single variable as would have been specified // on the command line via -var or in an environment variable named TF_VAR_x, where x is // the name of the variable. In order to get around the restriction of HCL requiring a // top level object, we prepend a sentinel key, decode the user-specified value as its // value and pull the value back out of the resulting map. func parseVariableAsHCL(name string, input string, targetType config.VariableType) (interface{}, error) { // expecting a string so don't decode anything, just strip quotes if targetType == config.VariableTypeString { return strings.Trim(input, `"`), nil } // return empty types if strings.TrimSpace(input) == "" { switch targetType { case config.VariableTypeList: return []interface{}{}, nil case config.VariableTypeMap: return make(map[string]interface{}), nil } } const sentinelValue = "SENTINEL_TERRAFORM_VAR_OVERRIDE_KEY" inputWithSentinal := fmt.Sprintf("%s = %s", sentinelValue, input) var decoded map[string]interface{} err := hcl.Decode(&decoded, inputWithSentinal) if err != nil { return nil, fmt.Errorf("Cannot parse value for variable %s (%q) as valid HCL: %s", name, input, err) } if len(decoded) != 1 { return nil, fmt.Errorf("Cannot parse value for variable %s (%q) as valid HCL. Only one value may be specified.", name, input) } parsedValue, ok := decoded[sentinelValue] if !ok { return nil, fmt.Errorf("Cannot parse value for variable %s (%q) as valid HCL. One value must be specified.", name, input) } switch targetType { case config.VariableTypeList: return parsedValue, nil case config.VariableTypeMap: if list, ok := parsedValue.([]map[string]interface{}); ok { return list[0], nil } return nil, fmt.Errorf("Cannot parse value for variable %s (%q) as valid HCL. One value must be specified.", name, input) default: panic(fmt.Errorf("unknown type %s", targetType.Printable())) } } // ShimLegacyState is a helper that takes the legacy state type and // converts it to the new state type. // // This is implemented as a state file upgrade, so it will not preserve // parts of the state structure that are not included in a serialized state, // such as the resolved results of any local values, outputs in non-root // modules, etc. func ShimLegacyState(legacy *State) (*states.State, error) { if legacy == nil { return nil, nil } var buf bytes.Buffer err := WriteState(legacy, &buf) if err != nil { return nil, err } f, err := statefile.Read(&buf) if err != nil { return nil, err } return f.State, err } // MustShimLegacyState is a wrapper around ShimLegacyState that panics if // the conversion does not succeed. This is primarily intended for tests where // the given legacy state is an object constructed within the test. func MustShimLegacyState(legacy *State) *states.State { ret, err := ShimLegacyState(legacy) if err != nil { panic(err) } return ret }