// Copyright (c) HashiCorp, Inc. // SPDX-License-Identifier: MPL-2.0 package moduledeps import ( "sort" "strings" "github.com/opentofu/opentofu/internal/plugin/discovery" ) // Module represents the dependencies of a single module, as well being // a node in a tree of such structures representing the dependencies of // an entire configuration. type Module struct { Name string Providers Providers Children []*Module } // WalkFunc is a callback type for use with Module.WalkTree type WalkFunc func(path []string, parent *Module, current *Module) error // WalkTree calls the given callback once for the receiver and then // once for each descendent, in an order such that parents are called // before their children and siblings are called in the order they // appear in the Children slice. // // When calling the callback, parent will be nil for the first call // for the receiving module, and then set to the direct parent of // each module for the subsequent calls. // // The path given to the callback is valid only until the callback // returns, after which it will be mutated and reused. Callbacks must // therefore copy the path slice if they wish to retain it. // // If the given callback returns an error, the walk will be aborted at // that point and that error returned to the caller. // // This function is not thread-safe for concurrent modifications of the // data structure, so it's the caller's responsibility to arrange for that // should it be needed. // // It is safe for a callback to modify the descendents of the "current" // module, including the ordering of the Children slice itself, but the // callback MUST NOT modify the parent module. func (m *Module) WalkTree(cb WalkFunc) error { return walkModuleTree(make([]string, 0, 1), nil, m, cb) } func walkModuleTree(path []string, parent *Module, current *Module, cb WalkFunc) error { path = append(path, current.Name) err := cb(path, parent, current) if err != nil { return err } for _, child := range current.Children { err := walkModuleTree(path, current, child, cb) if err != nil { return err } } return nil } // SortChildren sorts the Children slice into lexicographic order by // name, in-place. // // This is primarily useful prior to calling WalkTree so that the walk // will proceed in a consistent order. func (m *Module) SortChildren() { sort.Sort(sortModules{m.Children}) } // SortDescendents is a convenience wrapper for calling SortChildren on // the receiver and all of its descendent modules. func (m *Module) SortDescendents() { m.WalkTree(func(path []string, parent *Module, current *Module) error { current.SortChildren() return nil }) } type sortModules struct { modules []*Module } func (s sortModules) Len() int { return len(s.modules) } func (s sortModules) Less(i, j int) bool { cmp := strings.Compare(s.modules[i].Name, s.modules[j].Name) return cmp < 0 } func (s sortModules) Swap(i, j int) { s.modules[i], s.modules[j] = s.modules[j], s.modules[i] } // ProviderRequirements produces a PluginRequirements structure that can // be used with discovery.PluginMetaSet.ConstrainVersions to identify // suitable plugins to satisfy the module's provider dependencies. // // This method only considers the direct requirements of the receiver. // Use AllPluginRequirements to flatten the dependencies for the // entire tree of modules. // // Requirements returned by this method include only version constraints, // and apply no particular SHA256 hash constraint. func (m *Module) ProviderRequirements() discovery.PluginRequirements { ret := make(discovery.PluginRequirements) for pFqn, dep := range m.Providers { providerType := pFqn.Type if existing, exists := ret[providerType]; exists { ret[providerType].Versions = existing.Versions.Append(dep.Constraints) } else { ret[providerType] = &discovery.PluginConstraints{ Versions: dep.Constraints, } } } return ret } // AllProviderRequirements calls ProviderRequirements for the receiver and all // of its descendents, and merges the result into a single PluginRequirements // structure that would satisfy all of the modules together. // // Requirements returned by this method include only version constraints, // and apply no particular SHA256 hash constraint. func (m *Module) AllProviderRequirements() discovery.PluginRequirements { var ret discovery.PluginRequirements m.WalkTree(func(path []string, parent *Module, current *Module) error { ret = ret.Merge(current.ProviderRequirements()) return nil }) return ret } // Equal returns true if the receiver is the root of an identical tree // to the other given Module. This is a deep comparison that considers // the equality of all downstream modules too. // // The children are considered to be ordered, so callers may wish to use // SortDescendents first to normalize the order of the slices of child nodes. // // The implementation of this function is not optimized since it is provided // primarily for use in tests. func (m *Module) Equal(other *Module) bool { // take care of nils first if m == nil && other == nil { return true } else if (m == nil && other != nil) || (m != nil && other == nil) { return false } if m.Name != other.Name { return false } if len(m.Providers) != len(other.Providers) { return false } if len(m.Children) != len(other.Children) { return false } // Can't use reflect.DeepEqual on this provider structure because // the nested Constraints objects contain function pointers that // never compare as equal. So we'll need to walk it the long way. for inst, dep := range m.Providers { if _, exists := other.Providers[inst]; !exists { return false } if dep.Reason != other.Providers[inst].Reason { return false } // Constraints are not too easy to compare robustly, so // we'll just use their string representations as a proxy // for now. if dep.Constraints.String() != other.Providers[inst].Constraints.String() { return false } } // Above we already checked that we have the same number of children // in each module, so now we just need to check that they are // recursively equal. for i := range m.Children { if !m.Children[i].Equal(other.Children[i]) { return false } } // If we fall out here then they are equal return true }