package terraform import ( "github.com/hashicorp/terraform/dag" "github.com/hashicorp/terraform/plans" "github.com/hashicorp/terraform/providers" "github.com/hashicorp/terraform/states" "github.com/hashicorp/terraform/tfdiags" "github.com/zclconf/go-cty/cty" ) // NodeRefreshableDataResource represents a resource that is "refreshable". type NodeRefreshableDataResource struct { *NodeAbstractResource } var ( _ GraphNodeSubPath = (*NodeRefreshableDataResource)(nil) _ GraphNodeDynamicExpandable = (*NodeRefreshableDataResource)(nil) _ GraphNodeReferenceable = (*NodeRefreshableDataResource)(nil) _ GraphNodeReferencer = (*NodeRefreshableDataResource)(nil) _ GraphNodeResource = (*NodeRefreshableDataResource)(nil) _ GraphNodeAttachResourceConfig = (*NodeRefreshableDataResource)(nil) ) // GraphNodeDynamicExpandable func (n *NodeRefreshableDataResource) DynamicExpand(ctx EvalContext) (*Graph, error) { var diags tfdiags.Diagnostics count, countDiags := evaluateResourceCountExpression(n.Config.Count, ctx) diags = diags.Append(countDiags) if countDiags.HasErrors() { return nil, diags.Err() } // Next we need to potentially rename an instance address in the state // if we're transitioning whether "count" is set at all. fixResourceCountSetTransition(ctx, n.ResourceAddr(), count != -1) // Our graph transformers require access to the full state, so we'll // temporarily lock it while we work on this. state := ctx.State().Lock() defer ctx.State().Unlock() // The concrete resource factory we'll use concreteResource := func(a *NodeAbstractResourceInstance) dag.Vertex { // Add the config and state since we don't do that via transforms a.Config = n.Config a.ResolvedProvider = n.ResolvedProvider return &NodeRefreshableDataResourceInstance{ NodeAbstractResourceInstance: a, } } // We also need a destroyable resource for orphans that are a result of a // scaled-in count. concreteResourceDestroyable := func(a *NodeAbstractResourceInstance) dag.Vertex { // Add the config since we don't do that via transforms a.Config = n.Config return &NodeDestroyableDataResource{ NodeAbstractResourceInstance: a, } } // Start creating the steps steps := []GraphTransformer{ // Expand the count. &ResourceCountTransformer{ Concrete: concreteResource, Schema: n.Schema, Count: count, Addr: n.ResourceAddr(), }, // Add the count orphans. As these are orphaned refresh nodes, we add them // directly as NodeDestroyableDataResource. &OrphanResourceCountTransformer{ Concrete: concreteResourceDestroyable, Count: count, Addr: n.ResourceAddr(), State: state, }, // Attach the state &AttachStateTransformer{State: state}, // Targeting &TargetsTransformer{Targets: n.Targets}, // Connect references so ordering is correct &ReferenceTransformer{}, // Make sure there is a single root &RootTransformer{}, } // Build the graph b := &BasicGraphBuilder{ Steps: steps, Validate: true, Name: "NodeRefreshableDataResource", } graph, diags := b.Build(ctx.Path()) return graph, diags.ErrWithWarnings() } // NodeRefreshableDataResourceInstance represents a single resource instance // that is refreshable. type NodeRefreshableDataResourceInstance struct { *NodeAbstractResourceInstance } // GraphNodeEvalable func (n *NodeRefreshableDataResourceInstance) EvalTree() EvalNode { addr := n.ResourceInstanceAddr() // These variables are the state for the eval sequence below, and are // updated through pointers. var provider providers.Interface var providerSchema *ProviderSchema var change *plans.ResourceInstanceChange var state *states.ResourceInstanceObject var configVal cty.Value return &EvalSequence{ Nodes: []EvalNode{ &EvalGetProvider{ Addr: n.ResolvedProvider, Output: &provider, Schema: &providerSchema, }, // Always destroy the existing state first, since we must // make sure that values from a previous read will not // get interpolated if we end up needing to defer our // loading until apply time. &EvalWriteState{ Addr: addr.Resource, ProviderAddr: n.ResolvedProvider, State: &state, // a pointer to nil, here ProviderSchema: &providerSchema, }, &EvalIf{ If: func(ctx EvalContext) (bool, error) { // If the config explicitly has a depends_on for this // data source, assume the intention is to prevent // refreshing ahead of that dependency, and therefore // we need to deal with this resource during the apply // phase.. if len(n.Config.DependsOn) > 0 { return true, EvalEarlyExitError{} } return true, nil }, Then: EvalNoop{}, }, // EvalReadData will _attempt_ to read the data source, but may // generate an incomplete planned object if the configuration // includes values that won't be known until apply. &EvalReadData{ Addr: addr.Resource, Config: n.Config, Dependencies: n.StateReferences(), Provider: &provider, ProviderAddr: n.ResolvedProvider, ProviderSchema: &providerSchema, OutputChange: &change, OutputConfigValue: &configVal, OutputState: &state, }, &EvalIf{ If: func(ctx EvalContext) (bool, error) { return (*state).Status != states.ObjectPlanned, nil }, Then: &EvalSequence{ Nodes: []EvalNode{ &EvalWriteState{ Addr: addr.Resource, ProviderAddr: n.ResolvedProvider, State: &state, ProviderSchema: &providerSchema, }, &EvalUpdateStateHook{}, }, }, Else: &EvalSequence{ // We can't deal with this yet, so we'll repeat this step // during the plan walk to produce a planned change to read // this during the apply walk. However, we do still need to // save the generated change and partial state so that // results from it can be included in other data resources // or provider configurations during the refresh walk. // (The planned object we save in the state here will be // pruned out at the end of the refresh walk, returning // it back to being unset again for subsequent walks.) Nodes: []EvalNode{ &EvalWriteDiff{ Addr: addr.Resource, Change: &change, ProviderSchema: &providerSchema, }, &EvalWriteState{ Addr: addr.Resource, ProviderAddr: n.ResolvedProvider, State: &state, ProviderSchema: &providerSchema, }, }, }, }, }, } }