package terraform import ( "fmt" "log" "github.com/hashicorp/hcl/v2" "github.com/hashicorp/terraform/addrs" "github.com/hashicorp/terraform/configs" "github.com/hashicorp/terraform/dag" "github.com/hashicorp/terraform/instances" "github.com/hashicorp/terraform/lang" "github.com/hashicorp/terraform/tfdiags" "github.com/zclconf/go-cty/cty" "github.com/zclconf/go-cty/cty/convert" ) // nodeExpandModuleVariable is the placeholder for an variable that has not yet had // its module path expanded. type nodeExpandModuleVariable struct { Addr addrs.InputVariable Module addrs.Module Config *configs.Variable Expr hcl.Expression } var ( _ GraphNodeDynamicExpandable = (*nodeExpandModuleVariable)(nil) _ GraphNodeReferenceOutside = (*nodeExpandModuleVariable)(nil) _ GraphNodeReferenceable = (*nodeExpandModuleVariable)(nil) _ GraphNodeReferencer = (*nodeExpandModuleVariable)(nil) _ graphNodeTemporaryValue = (*nodeExpandModuleVariable)(nil) _ graphNodeExpandsInstances = (*nodeExpandModuleVariable)(nil) ) func (n *nodeExpandModuleVariable) expandsInstances() {} func (n *nodeExpandModuleVariable) temporaryValue() bool { return true } func (n *nodeExpandModuleVariable) DynamicExpand(ctx EvalContext) (*Graph, error) { var g Graph expander := ctx.InstanceExpander() for _, module := range expander.ExpandModule(n.Module) { o := &nodeModuleVariable{ Addr: n.Addr.Absolute(module), Config: n.Config, Expr: n.Expr, ModuleInstance: module, } g.Add(o) } return &g, nil } func (n *nodeExpandModuleVariable) Name() string { return fmt.Sprintf("%s.%s (expand)", n.Module, n.Addr.String()) } // GraphNodeModulePath func (n *nodeExpandModuleVariable) ModulePath() addrs.Module { return n.Module } // GraphNodeReferencer func (n *nodeExpandModuleVariable) References() []*addrs.Reference { // If we have no value expression, we cannot depend on anything. if n.Expr == nil { return nil } // Variables in the root don't depend on anything, because their values // are gathered prior to the graph walk and recorded in the context. if len(n.Module) == 0 { return nil } // Otherwise, we depend on anything referenced by our value expression. // We ignore diagnostics here under the assumption that we'll re-eval // all these things later and catch them then; for our purposes here, // we only care about valid references. // // Due to our GraphNodeReferenceOutside implementation, the addresses // returned by this function are interpreted in the _parent_ module from // where our associated variable was declared, which is correct because // our value expression is assigned within a "module" block in the parent // module. refs, _ := lang.ReferencesInExpr(n.Expr) return refs } // GraphNodeReferenceOutside implementation func (n *nodeExpandModuleVariable) ReferenceOutside() (selfPath, referencePath addrs.Module) { return n.Module, n.Module.Parent() } // GraphNodeReferenceable func (n *nodeExpandModuleVariable) ReferenceableAddrs() []addrs.Referenceable { return []addrs.Referenceable{n.Addr} } // nodeModuleVariable represents a module variable input during // the apply step. type nodeModuleVariable struct { Addr addrs.AbsInputVariableInstance Config *configs.Variable // Config is the var in the config Expr hcl.Expression // Expr is the value expression given in the call // ModuleInstance in order to create the appropriate context for evaluating // ModuleCallArguments, ex. so count.index and each.key can resolve ModuleInstance addrs.ModuleInstance } // Ensure that we are implementing all of the interfaces we think we are // implementing. var ( _ GraphNodeModuleInstance = (*nodeModuleVariable)(nil) _ GraphNodeExecutable = (*nodeModuleVariable)(nil) _ graphNodeTemporaryValue = (*nodeModuleVariable)(nil) _ dag.GraphNodeDotter = (*nodeModuleVariable)(nil) ) func (n *nodeModuleVariable) temporaryValue() bool { return true } func (n *nodeModuleVariable) Name() string { return n.Addr.String() } // GraphNodeModuleInstance func (n *nodeModuleVariable) Path() addrs.ModuleInstance { // We execute in the parent scope (above our own module) because // expressions in our value are resolved in that context. return n.Addr.Module.Parent() } // GraphNodeModulePath func (n *nodeModuleVariable) ModulePath() addrs.Module { return n.Addr.Module.Module() } // GraphNodeExecutable func (n *nodeModuleVariable) Execute(ctx EvalContext, op walkOperation) (diags tfdiags.Diagnostics) { // If we have no value, do nothing if n.Expr == nil { return nil } // Otherwise, interpolate the value of this variable and set it // within the variables mapping. var vals map[string]cty.Value var err error switch op { case walkValidate: vals, err = n.EvalModuleCallArgument(ctx, true) diags = diags.Append(err) if diags.HasErrors() { return diags } default: vals, err = n.EvalModuleCallArgument(ctx, false) diags = diags.Append(err) if diags.HasErrors() { return diags } } // Set values for arguments of a child module call, for later retrieval // during expression evaluation. _, call := n.Addr.Module.CallInstance() ctx.SetModuleCallArguments(call, vals) return evalVariableValidations(n.Addr, n.Config, n.Expr, ctx) } // dag.GraphNodeDotter impl. func (n *nodeModuleVariable) DotNode(name string, opts *dag.DotOpts) *dag.DotNode { return &dag.DotNode{ Name: name, Attrs: map[string]string{ "label": n.Name(), "shape": "note", }, } } // EvalModuleCallArgument produces the value for a particular variable as will // be used by a child module instance. // // The result is written into a map, with its key set to the local name of the // variable, disregarding the module instance address. A map is returned instead // of a single value as a result of trying to be convenient for use with // EvalContext.SetModuleCallArguments, which expects a map to merge in with any // existing arguments. // // validateOnly indicates that this evaluation is only for config // validation, and we will not have any expansion module instance // repetition data. func (n *nodeModuleVariable) EvalModuleCallArgument(ctx EvalContext, validateOnly bool) (map[string]cty.Value, error) { wantType := n.Config.Type name := n.Addr.Variable.Name expr := n.Expr if expr == nil { // Should never happen, but we'll bail out early here rather than // crash in case it does. We set no value at all in this case, // making a subsequent call to EvalContext.SetModuleCallArguments // a no-op. log.Printf("[ERROR] attempt to evaluate %s with nil expression", n.Addr.String()) return nil, nil } var moduleInstanceRepetitionData instances.RepetitionData switch { case validateOnly: // the instance expander does not track unknown expansion values, so we // have to assume all RepetitionData is unknown. moduleInstanceRepetitionData = instances.RepetitionData{ CountIndex: cty.UnknownVal(cty.Number), EachKey: cty.UnknownVal(cty.String), EachValue: cty.DynamicVal, } default: // Get the repetition data for this module instance, // so we can create the appropriate scope for evaluating our expression moduleInstanceRepetitionData = ctx.InstanceExpander().GetModuleInstanceRepetitionData(n.ModuleInstance) } scope := ctx.EvaluationScope(nil, moduleInstanceRepetitionData) val, diags := scope.EvalExpr(expr, cty.DynamicPseudoType) // We intentionally passed DynamicPseudoType to EvalExpr above because // now we can do our own local type conversion and produce an error message // with better context if it fails. var convErr error val, convErr = convert.Convert(val, wantType) if convErr != nil { diags = diags.Append(&hcl.Diagnostic{ Severity: hcl.DiagError, Summary: "Invalid value for module argument", Detail: fmt.Sprintf( "The given value is not suitable for child module variable %q defined at %s: %s.", name, n.Config.DeclRange.String(), convErr, ), Subject: expr.Range().Ptr(), }) // We'll return a placeholder unknown value to avoid producing // redundant downstream errors. val = cty.UnknownVal(wantType) } vals := make(map[string]cty.Value) vals[name] = val return vals, diags.ErrWithWarnings() }