package terraform import ( "context" "fmt" "log" "sort" "strings" "sync" "github.com/hashicorp/terraform/tfdiags" "github.com/hashicorp/go-multierror" "github.com/hashicorp/hcl" "github.com/hashicorp/terraform/config" "github.com/hashicorp/terraform/config/module" "github.com/hashicorp/terraform/version" ) // InputMode defines what sort of input will be asked for when Input // is called on Context. type InputMode byte const ( // InputModeVar asks for all variables InputModeVar InputMode = 1 << iota // InputModeVarUnset asks for variables which are not set yet. // InputModeVar must be set for this to have an effect. InputModeVarUnset // InputModeProvider asks for provider variables InputModeProvider // InputModeStd is the standard operating mode and asks for both variables // and providers. InputModeStd = InputModeVar | InputModeProvider ) var ( // contextFailOnShadowError will cause Context operations to return // errors when shadow operations fail. This is only used for testing. contextFailOnShadowError = false // contextTestDeepCopyOnPlan will perform a Diff DeepCopy on every // Plan operation, effectively testing the Diff DeepCopy whenever // a Plan occurs. This is enabled for tests. contextTestDeepCopyOnPlan = false ) // ContextOpts are the user-configurable options to create a context with // NewContext. type ContextOpts struct { Meta *ContextMeta Destroy bool Diff *Diff Hooks []Hook Module *module.Tree Parallelism int State *State StateFutureAllowed bool ProviderResolver ResourceProviderResolver Provisioners map[string]ResourceProvisionerFactory Shadow bool Targets []string Variables map[string]interface{} // If non-nil, will apply as additional constraints on the provider // plugins that will be requested from the provider resolver. ProviderSHA256s map[string][]byte SkipProviderVerify bool UIInput UIInput } // ContextMeta is metadata about the running context. This is information // that this package or structure cannot determine on its own but exposes // into Terraform in various ways. This must be provided by the Context // initializer. type ContextMeta struct { Env string // Env is the state environment } // Context represents all the context that Terraform needs in order to // perform operations on infrastructure. This structure is built using // NewContext. See the documentation for that. // // Extra functions on Context can be found in context_*.go files. type Context struct { // Maintainer note: Anytime this struct is changed, please verify // that newShadowContext still does the right thing. Tests should // fail regardless but putting this note here as well. components contextComponentFactory destroy bool diff *Diff diffLock sync.RWMutex hooks []Hook meta *ContextMeta module *module.Tree sh *stopHook shadow bool state *State stateLock sync.RWMutex targets []string uiInput UIInput variables map[string]interface{} l sync.Mutex // Lock acquired during any task parallelSem Semaphore providerInputConfig map[string]map[string]interface{} providerSHA256s map[string][]byte runLock sync.Mutex runCond *sync.Cond runContext context.Context runContextCancel context.CancelFunc shadowErr error } // NewContext creates a new Context structure. // // Once a Context is creator, the pointer values within ContextOpts // should not be mutated in any way, since the pointers are copied, not // the values themselves. func NewContext(opts *ContextOpts) (*Context, error) { // Validate the version requirement if it is given if opts.Module != nil { if err := CheckRequiredVersion(opts.Module); err != nil { return nil, err } } // Copy all the hooks and add our stop hook. We don't append directly // to the Config so that we're not modifying that in-place. sh := new(stopHook) hooks := make([]Hook, len(opts.Hooks)+1) copy(hooks, opts.Hooks) hooks[len(opts.Hooks)] = sh state := opts.State if state == nil { state = new(State) state.init() } // If our state is from the future, then error. Callers can avoid // this error by explicitly setting `StateFutureAllowed`. if err := CheckStateVersion(state); err != nil && !opts.StateFutureAllowed { return nil, err } // Explicitly reset our state version to our current version so that // any operations we do will write out that our latest version // has run. state.TFVersion = version.Version // Determine parallelism, default to 10. We do this both to limit // CPU pressure but also to have an extra guard against rate throttling // from providers. par := opts.Parallelism if par == 0 { par = 10 } // Set up the variables in the following sequence: // 0 - Take default values from the configuration // 1 - Take values from TF_VAR_x environment variables // 2 - Take values specified in -var flags, overriding values // set by environment variables if necessary. This includes // values taken from -var-file in addition. variables := make(map[string]interface{}) if opts.Module != nil { var err error variables, err = Variables(opts.Module, opts.Variables) if err != nil { return nil, err } } // Bind available provider plugins to the constraints in config var providers map[string]ResourceProviderFactory if opts.ProviderResolver != nil { var err error deps := ModuleTreeDependencies(opts.Module, state) reqd := deps.AllPluginRequirements() if opts.ProviderSHA256s != nil && !opts.SkipProviderVerify { reqd.LockExecutables(opts.ProviderSHA256s) } providers, err = resourceProviderFactories(opts.ProviderResolver, reqd) if err != nil { return nil, err } } else { providers = make(map[string]ResourceProviderFactory) } diff := opts.Diff if diff == nil { diff = &Diff{} } return &Context{ components: &basicComponentFactory{ providers: providers, provisioners: opts.Provisioners, }, destroy: opts.Destroy, diff: diff, hooks: hooks, meta: opts.Meta, module: opts.Module, shadow: opts.Shadow, state: state, targets: opts.Targets, uiInput: opts.UIInput, variables: variables, parallelSem: NewSemaphore(par), providerInputConfig: make(map[string]map[string]interface{}), providerSHA256s: opts.ProviderSHA256s, sh: sh, }, nil } type ContextGraphOpts struct { // If true, validates the graph structure (checks for cycles). Validate bool // Legacy graphs only: won't prune the graph Verbose bool } // Graph returns the graph used for the given operation type. // // The most extensive or complex graph type is GraphTypePlan. func (c *Context) Graph(typ GraphType, opts *ContextGraphOpts) (*Graph, error) { if opts == nil { opts = &ContextGraphOpts{Validate: true} } log.Printf("[INFO] terraform: building graph: %s", typ) switch typ { case GraphTypeApply: return (&ApplyGraphBuilder{ Module: c.module, Diff: c.diff, State: c.state, Providers: c.components.ResourceProviders(), Provisioners: c.components.ResourceProvisioners(), Targets: c.targets, Destroy: c.destroy, Validate: opts.Validate, }).Build(RootModulePath) case GraphTypeInput: // The input graph is just a slightly modified plan graph fallthrough case GraphTypeValidate: // The validate graph is just a slightly modified plan graph fallthrough case GraphTypePlan: // Create the plan graph builder p := &PlanGraphBuilder{ Module: c.module, State: c.state, Providers: c.components.ResourceProviders(), Targets: c.targets, Validate: opts.Validate, } // Some special cases for other graph types shared with plan currently var b GraphBuilder = p switch typ { case GraphTypeInput: b = InputGraphBuilder(p) case GraphTypeValidate: // We need to set the provisioners so those can be validated p.Provisioners = c.components.ResourceProvisioners() b = ValidateGraphBuilder(p) } return b.Build(RootModulePath) case GraphTypePlanDestroy: return (&DestroyPlanGraphBuilder{ Module: c.module, State: c.state, Targets: c.targets, Validate: opts.Validate, }).Build(RootModulePath) case GraphTypeRefresh: return (&RefreshGraphBuilder{ Module: c.module, State: c.state, Providers: c.components.ResourceProviders(), Targets: c.targets, Validate: opts.Validate, }).Build(RootModulePath) } return nil, fmt.Errorf("unknown graph type: %s", typ) } // ShadowError returns any errors caught during a shadow operation. // // A shadow operation is an operation run in parallel to a real operation // that performs the same tasks using new logic on copied state. The results // are compared to ensure that the new logic works the same as the old logic. // The shadow never affects the real operation or return values. // // The result of the shadow operation are only available through this function // call after a real operation is complete. // // For API consumers of Context, you can safely ignore this function // completely if you have no interest in helping report experimental feature // errors to Terraform maintainers. Otherwise, please call this function // after every operation and report this to the user. // // IMPORTANT: Shadow errors are _never_ critical: they _never_ affect // the real state or result of a real operation. They are purely informational // to assist in future Terraform versions being more stable. Please message // this effectively to the end user. // // This must be called only when no other operation is running (refresh, // plan, etc.). The result can be used in parallel to any other operation // running. func (c *Context) ShadowError() error { return c.shadowErr } // State returns a copy of the current state associated with this context. // // This cannot safely be called in parallel with any other Context function. func (c *Context) State() *State { return c.state.DeepCopy() } // Interpolater returns an Interpolater built on a copy of the state // that can be used to test interpolation values. func (c *Context) Interpolater() *Interpolater { var varLock sync.Mutex var stateLock sync.RWMutex return &Interpolater{ Operation: walkApply, Meta: c.meta, Module: c.module, State: c.state.DeepCopy(), StateLock: &stateLock, VariableValues: c.variables, VariableValuesLock: &varLock, } } // Input asks for input to fill variables and provider configurations. // This modifies the configuration in-place, so asking for Input twice // may result in different UI output showing different current values. func (c *Context) Input(mode InputMode) error { defer c.acquireRun("input")() if mode&InputModeVar != 0 { // Walk the variables first for the root module. We walk them in // alphabetical order for UX reasons. rootConf := c.module.Config() names := make([]string, len(rootConf.Variables)) m := make(map[string]*config.Variable) for i, v := range rootConf.Variables { names[i] = v.Name m[v.Name] = v } sort.Strings(names) for _, n := range names { // If we only care about unset variables, then if the variable // is set, continue on. if mode&InputModeVarUnset != 0 { if _, ok := c.variables[n]; ok { continue } } var valueType config.VariableType v := m[n] switch valueType = v.Type(); valueType { case config.VariableTypeUnknown: continue case config.VariableTypeMap: // OK case config.VariableTypeList: // OK case config.VariableTypeString: // OK default: panic(fmt.Sprintf("Unknown variable type: %#v", v.Type())) } // If the variable is not already set, and the variable defines a // default, use that for the value. if _, ok := c.variables[n]; !ok { if v.Default != nil { c.variables[n] = v.Default.(string) continue } } // this should only happen during tests if c.uiInput == nil { log.Println("[WARN] Content.uiInput is nil") continue } // Ask the user for a value for this variable var value string retry := 0 for { var err error value, err = c.uiInput.Input(&InputOpts{ Id: fmt.Sprintf("var.%s", n), Query: fmt.Sprintf("var.%s", n), Description: v.Description, }) if err != nil { return fmt.Errorf( "Error asking for %s: %s", n, err) } if value == "" && v.Required() { // Redo if it is required, but abort if we keep getting // blank entries if retry > 2 { return fmt.Errorf("missing required value for %q", n) } retry++ continue } break } // no value provided, so don't set the variable at all if value == "" { continue } decoded, err := parseVariableAsHCL(n, value, valueType) if err != nil { return err } if decoded != nil { c.variables[n] = decoded } } } if mode&InputModeProvider != 0 { // Build the graph graph, err := c.Graph(GraphTypeInput, nil) if err != nil { return err } // Do the walk if _, err := c.walk(graph, walkInput); err != nil { return err } } return nil } // Apply applies the changes represented by this context and returns // the resulting state. // // Even in the case an error is returned, the state may be returned and will // potentially be partially updated. In addition to returning the resulting // state, this context is updated with the latest state. // // If the state is required after an error, the caller should call // Context.State, rather than rely on the return value. // // TODO: Apply and Refresh should either always return a state, or rely on the // State() method. Currently the helper/resource testing framework relies // on the absence of a returned state to determine if Destroy can be // called, so that will need to be refactored before this can be changed. func (c *Context) Apply() (*State, error) { defer c.acquireRun("apply")() // Copy our own state c.state = c.state.DeepCopy() // Build the graph. graph, err := c.Graph(GraphTypeApply, nil) if err != nil { return nil, err } // Determine the operation operation := walkApply if c.destroy { operation = walkDestroy } // Walk the graph walker, err := c.walk(graph, operation) if len(walker.ValidationErrors) > 0 { err = multierror.Append(err, walker.ValidationErrors...) } // Clean out any unused things c.state.prune() return c.state, err } // Plan generates an execution plan for the given context. // // The execution plan encapsulates the context and can be stored // in order to reinstantiate a context later for Apply. // // Plan also updates the diff of this context to be the diff generated // by the plan, so Apply can be called after. func (c *Context) Plan() (*Plan, error) { defer c.acquireRun("plan")() p := &Plan{ Module: c.module, Vars: c.variables, State: c.state, Targets: c.targets, TerraformVersion: version.String(), ProviderSHA256s: c.providerSHA256s, } var operation walkOperation if c.destroy { operation = walkPlanDestroy p.Destroy = true } else { // Set our state to be something temporary. We do this so that // the plan can update a fake state so that variables work, then // we replace it back with our old state. old := c.state if old == nil { c.state = &State{} c.state.init() } else { c.state = old.DeepCopy() } defer func() { c.state = old }() operation = walkPlan } // Setup our diff c.diffLock.Lock() c.diff = new(Diff) c.diff.init() c.diffLock.Unlock() // Build the graph. graphType := GraphTypePlan if c.destroy { graphType = GraphTypePlanDestroy } graph, err := c.Graph(graphType, nil) if err != nil { return nil, err } // Do the walk walker, err := c.walk(graph, operation) if err != nil { return nil, err } p.Diff = c.diff // If this is true, it means we're running unit tests. In this case, // we perform a deep copy just to ensure that all context tests also // test that a diff is copy-able. This will panic if it fails. This // is enabled during unit tests. // // This should never be true during production usage, but even if it is, // it can't do any real harm. if contextTestDeepCopyOnPlan { p.Diff.DeepCopy() } /* // We don't do the reverification during the new destroy plan because // it will use a different apply process. if X_legacyGraph { // Now that we have a diff, we can build the exact graph that Apply will use // and catch any possible cycles during the Plan phase. if _, err := c.Graph(GraphTypeLegacy, nil); err != nil { return nil, err } } */ var errs error if len(walker.ValidationErrors) > 0 { errs = multierror.Append(errs, walker.ValidationErrors...) } return p, errs } // Refresh goes through all the resources in the state and refreshes them // to their latest state. This will update the state that this context // works with, along with returning it. // // Even in the case an error is returned, the state may be returned and // will potentially be partially updated. func (c *Context) Refresh() (*State, error) { defer c.acquireRun("refresh")() // Copy our own state c.state = c.state.DeepCopy() // Build the graph. graph, err := c.Graph(GraphTypeRefresh, nil) if err != nil { return nil, err } // Do the walk if _, err := c.walk(graph, walkRefresh); err != nil { return nil, err } // Clean out any unused things c.state.prune() return c.state, nil } // Stop stops the running task. // // Stop will block until the task completes. func (c *Context) Stop() { log.Printf("[WARN] terraform: Stop called, initiating interrupt sequence") c.l.Lock() defer c.l.Unlock() // If we're running, then stop if c.runContextCancel != nil { log.Printf("[WARN] terraform: run context exists, stopping") // Tell the hook we want to stop c.sh.Stop() // Stop the context c.runContextCancel() c.runContextCancel = nil } // Grab the condition var before we exit if cond := c.runCond; cond != nil { cond.Wait() } log.Printf("[WARN] terraform: stop complete") } // Validate validates the configuration and returns any warnings or errors. func (c *Context) Validate() tfdiags.Diagnostics { defer c.acquireRun("validate")() var diags tfdiags.Diagnostics // Validate the configuration itself diags = diags.Append(c.module.Validate()) // This only needs to be done for the root module, since inter-module // variables are validated in the module tree. if config := c.module.Config(); config != nil { // Validate the user variables for _, err := range smcUserVariables(config, c.variables) { diags = diags.Append(err) } } // If we have errors at this point, the graphing has no chance, // so just bail early. if diags.HasErrors() { return diags } // Build the graph so we can walk it and run Validate on nodes. // We also validate the graph generated here, but this graph doesn't // necessarily match the graph that Plan will generate, so we'll validate the // graph again later after Planning. graph, err := c.Graph(GraphTypeValidate, nil) if err != nil { diags = diags.Append(err) return diags } // Walk walker, err := c.walk(graph, walkValidate) if err != nil { diags = diags.Append(err) } sort.Strings(walker.ValidationWarnings) sort.Slice(walker.ValidationErrors, func(i, j int) bool { return walker.ValidationErrors[i].Error() < walker.ValidationErrors[j].Error() }) for _, warn := range walker.ValidationWarnings { diags = diags.Append(tfdiags.SimpleWarning(warn)) } for _, err := range walker.ValidationErrors { diags = diags.Append(err) } return diags } // Module returns the module tree associated with this context. func (c *Context) Module() *module.Tree { return c.module } // Variables will return the mapping of variables that were defined // for this Context. If Input was called, this mapping may be different // than what was given. func (c *Context) Variables() map[string]interface{} { return c.variables } // SetVariable sets a variable after a context has already been built. func (c *Context) SetVariable(k string, v interface{}) { c.variables[k] = v } func (c *Context) acquireRun(phase string) func() { // With the run lock held, grab the context lock to make changes // to the run context. c.l.Lock() defer c.l.Unlock() // Wait until we're no longer running for c.runCond != nil { c.runCond.Wait() } // Build our lock c.runCond = sync.NewCond(&c.l) // Setup debugging dbug.SetPhase(phase) // Create a new run context c.runContext, c.runContextCancel = context.WithCancel(context.Background()) // Reset the stop hook so we're not stopped c.sh.Reset() // Reset the shadow errors c.shadowErr = nil return c.releaseRun } func (c *Context) releaseRun() { // Grab the context lock so that we can make modifications to fields c.l.Lock() defer c.l.Unlock() // setting the phase to "INVALID" lets us easily detect if we have // operations happening outside of a run, or we missed setting the proper // phase dbug.SetPhase("INVALID") // End our run. We check if runContext is non-nil because it can be // set to nil if it was cancelled via Stop() if c.runContextCancel != nil { c.runContextCancel() } // Unlock all waiting our condition cond := c.runCond c.runCond = nil cond.Broadcast() // Unset the context c.runContext = nil } func (c *Context) walk(graph *Graph, operation walkOperation) (*ContextGraphWalker, error) { // Keep track of the "real" context which is the context that does // the real work: talking to real providers, modifying real state, etc. realCtx := c log.Printf("[DEBUG] Starting graph walk: %s", operation.String()) walker := &ContextGraphWalker{ Context: realCtx, Operation: operation, StopContext: c.runContext, } // Watch for a stop so we can call the provider Stop() API. watchStop, watchWait := c.watchStop(walker) // Walk the real graph, this will block until it completes realErr := graph.Walk(walker) // Close the channel so the watcher stops, and wait for it to return. close(watchStop) <-watchWait return walker, realErr } // watchStop immediately returns a `stop` and a `wait` chan after dispatching // the watchStop goroutine. This will watch the runContext for cancellation and // stop the providers accordingly. When the watch is no longer needed, the // `stop` chan should be closed before waiting on the `wait` chan. // The `wait` chan is important, because without synchronizing with the end of // the watchStop goroutine, the runContext may also be closed during the select // incorrectly causing providers to be stopped. Even if the graph walk is done // at that point, stopping a provider permanently cancels its StopContext which // can cause later actions to fail. func (c *Context) watchStop(walker *ContextGraphWalker) (chan struct{}, <-chan struct{}) { stop := make(chan struct{}) wait := make(chan struct{}) // get the runContext cancellation channel now, because releaseRun will // write to the runContext field. done := c.runContext.Done() go func() { defer close(wait) // Wait for a stop or completion select { case <-done: // done means the context was canceled, so we need to try and stop // providers. case <-stop: // our own stop channel was closed. return } // If we're here, we're stopped, trigger the call. { // Copy the providers so that a misbehaved blocking Stop doesn't // completely hang Terraform. walker.providerLock.Lock() ps := make([]ResourceProvider, 0, len(walker.providerCache)) for _, p := range walker.providerCache { ps = append(ps, p) } defer walker.providerLock.Unlock() for _, p := range ps { // We ignore the error for now since there isn't any reasonable // action to take if there is an error here, since the stop is still // advisory: Terraform will exit once the graph node completes. p.Stop() } } { // Call stop on all the provisioners walker.provisionerLock.Lock() ps := make([]ResourceProvisioner, 0, len(walker.provisionerCache)) for _, p := range walker.provisionerCache { ps = append(ps, p) } defer walker.provisionerLock.Unlock() for _, p := range ps { // We ignore the error for now since there isn't any reasonable // action to take if there is an error here, since the stop is still // advisory: Terraform will exit once the graph node completes. p.Stop() } } }() return stop, wait } // parseVariableAsHCL parses the value of a single variable as would have been specified // on the command line via -var or in an environment variable named TF_VAR_x, where x is // the name of the variable. In order to get around the restriction of HCL requiring a // top level object, we prepend a sentinel key, decode the user-specified value as its // value and pull the value back out of the resulting map. func parseVariableAsHCL(name string, input string, targetType config.VariableType) (interface{}, error) { // expecting a string so don't decode anything, just strip quotes if targetType == config.VariableTypeString { return strings.Trim(input, `"`), nil } // return empty types if strings.TrimSpace(input) == "" { switch targetType { case config.VariableTypeList: return []interface{}{}, nil case config.VariableTypeMap: return make(map[string]interface{}), nil } } const sentinelValue = "SENTINEL_TERRAFORM_VAR_OVERRIDE_KEY" inputWithSentinal := fmt.Sprintf("%s = %s", sentinelValue, input) var decoded map[string]interface{} err := hcl.Decode(&decoded, inputWithSentinal) if err != nil { return nil, fmt.Errorf("Cannot parse value for variable %s (%q) as valid HCL: %s", name, input, err) } if len(decoded) != 1 { return nil, fmt.Errorf("Cannot parse value for variable %s (%q) as valid HCL. Only one value may be specified.", name, input) } parsedValue, ok := decoded[sentinelValue] if !ok { return nil, fmt.Errorf("Cannot parse value for variable %s (%q) as valid HCL. One value must be specified.", name, input) } switch targetType { case config.VariableTypeList: return parsedValue, nil case config.VariableTypeMap: if list, ok := parsedValue.([]map[string]interface{}); ok { return list[0], nil } return nil, fmt.Errorf("Cannot parse value for variable %s (%q) as valid HCL. One value must be specified.", name, input) default: panic(fmt.Errorf("unknown type %s", targetType.Printable())) } }