opentofu/dag/dag_test.go
2020-12-02 13:59:19 -05:00

429 lines
8.0 KiB
Go

package dag
import (
"flag"
"fmt"
"os"
"reflect"
"strconv"
"strings"
"sync"
"testing"
"github.com/hashicorp/terraform/tfdiags"
_ "github.com/hashicorp/terraform/internal/logging"
)
func TestMain(m *testing.M) {
flag.Parse()
os.Exit(m.Run())
}
func TestAcyclicGraphRoot(t *testing.T) {
var g AcyclicGraph
g.Add(1)
g.Add(2)
g.Add(3)
g.Connect(BasicEdge(3, 2))
g.Connect(BasicEdge(3, 1))
if root, err := g.Root(); err != nil {
t.Fatalf("err: %s", err)
} else if root != 3 {
t.Fatalf("bad: %#v", root)
}
}
func TestAcyclicGraphRoot_cycle(t *testing.T) {
var g AcyclicGraph
g.Add(1)
g.Add(2)
g.Add(3)
g.Connect(BasicEdge(1, 2))
g.Connect(BasicEdge(2, 3))
g.Connect(BasicEdge(3, 1))
if _, err := g.Root(); err == nil {
t.Fatal("should error")
}
}
func TestAcyclicGraphRoot_multiple(t *testing.T) {
var g AcyclicGraph
g.Add(1)
g.Add(2)
g.Add(3)
g.Connect(BasicEdge(3, 2))
if _, err := g.Root(); err == nil {
t.Fatal("should error")
}
}
func TestAyclicGraphTransReduction(t *testing.T) {
var g AcyclicGraph
g.Add(1)
g.Add(2)
g.Add(3)
g.Connect(BasicEdge(1, 2))
g.Connect(BasicEdge(1, 3))
g.Connect(BasicEdge(2, 3))
g.TransitiveReduction()
actual := strings.TrimSpace(g.String())
expected := strings.TrimSpace(testGraphTransReductionStr)
if actual != expected {
t.Fatalf("bad: %s", actual)
}
}
func TestAyclicGraphTransReduction_more(t *testing.T) {
var g AcyclicGraph
g.Add(1)
g.Add(2)
g.Add(3)
g.Add(4)
g.Connect(BasicEdge(1, 2))
g.Connect(BasicEdge(1, 3))
g.Connect(BasicEdge(1, 4))
g.Connect(BasicEdge(2, 3))
g.Connect(BasicEdge(2, 4))
g.Connect(BasicEdge(3, 4))
g.TransitiveReduction()
actual := strings.TrimSpace(g.String())
expected := strings.TrimSpace(testGraphTransReductionMoreStr)
if actual != expected {
t.Fatalf("bad: %s", actual)
}
}
// use this to simulate slow sort operations
type counter struct {
Name string
Calls int64
}
func (s *counter) String() string {
s.Calls++
return s.Name
}
// Make sure we can reduce a sizable, fully-connected graph.
func TestAyclicGraphTransReduction_fullyConnected(t *testing.T) {
var g AcyclicGraph
const nodeCount = 200
nodes := make([]*counter, nodeCount)
for i := 0; i < nodeCount; i++ {
nodes[i] = &counter{Name: strconv.Itoa(i)}
}
// Add them all to the graph
for _, n := range nodes {
g.Add(n)
}
// connect them all
for i := range nodes {
for j := range nodes {
if i == j {
continue
}
g.Connect(BasicEdge(nodes[i], nodes[j]))
}
}
g.TransitiveReduction()
vertexNameCalls := int64(0)
for _, n := range nodes {
vertexNameCalls += n.Calls
}
switch {
case vertexNameCalls > 2*nodeCount:
// Make calling it more the 2x per node fatal.
// If we were sorting this would give us roughly ln(n)(n^3) calls, or
// >59000000 calls for 200 vertices.
t.Fatalf("VertexName called %d times", vertexNameCalls)
case vertexNameCalls > 0:
// we don't expect any calls, but a change here isn't necessarily fatal
t.Logf("WARNING: VertexName called %d times", vertexNameCalls)
}
}
func TestAcyclicGraphValidate(t *testing.T) {
var g AcyclicGraph
g.Add(1)
g.Add(2)
g.Add(3)
g.Connect(BasicEdge(3, 2))
g.Connect(BasicEdge(3, 1))
if err := g.Validate(); err != nil {
t.Fatalf("err: %s", err)
}
}
func TestAcyclicGraphValidate_cycle(t *testing.T) {
var g AcyclicGraph
g.Add(1)
g.Add(2)
g.Add(3)
g.Connect(BasicEdge(3, 2))
g.Connect(BasicEdge(3, 1))
g.Connect(BasicEdge(1, 2))
g.Connect(BasicEdge(2, 1))
if err := g.Validate(); err == nil {
t.Fatal("should error")
}
}
func TestAcyclicGraphValidate_cycleSelf(t *testing.T) {
var g AcyclicGraph
g.Add(1)
g.Add(2)
g.Connect(BasicEdge(1, 1))
if err := g.Validate(); err == nil {
t.Fatal("should error")
}
}
func TestAcyclicGraphAncestors(t *testing.T) {
var g AcyclicGraph
g.Add(1)
g.Add(2)
g.Add(3)
g.Add(4)
g.Add(5)
g.Connect(BasicEdge(0, 1))
g.Connect(BasicEdge(1, 2))
g.Connect(BasicEdge(2, 3))
g.Connect(BasicEdge(3, 4))
g.Connect(BasicEdge(4, 5))
actual, err := g.Ancestors(2)
if err != nil {
t.Fatalf("err: %#v", err)
}
expected := []Vertex{3, 4, 5}
if actual.Len() != len(expected) {
t.Fatalf("bad length! expected %#v to have len %d", actual, len(expected))
}
for _, e := range expected {
if !actual.Include(e) {
t.Fatalf("expected: %#v to include: %#v", expected, actual)
}
}
}
func TestAcyclicGraphDescendents(t *testing.T) {
var g AcyclicGraph
g.Add(1)
g.Add(2)
g.Add(3)
g.Add(4)
g.Add(5)
g.Connect(BasicEdge(0, 1))
g.Connect(BasicEdge(1, 2))
g.Connect(BasicEdge(2, 3))
g.Connect(BasicEdge(3, 4))
g.Connect(BasicEdge(4, 5))
actual, err := g.Descendents(2)
if err != nil {
t.Fatalf("err: %#v", err)
}
expected := []Vertex{0, 1}
if actual.Len() != len(expected) {
t.Fatalf("bad length! expected %#v to have len %d", actual, len(expected))
}
for _, e := range expected {
if !actual.Include(e) {
t.Fatalf("expected: %#v to include: %#v", expected, actual)
}
}
}
func TestAcyclicGraphWalk(t *testing.T) {
var g AcyclicGraph
g.Add(1)
g.Add(2)
g.Add(3)
g.Connect(BasicEdge(3, 2))
g.Connect(BasicEdge(3, 1))
var visits []Vertex
var lock sync.Mutex
err := g.Walk(func(v Vertex) tfdiags.Diagnostics {
lock.Lock()
defer lock.Unlock()
visits = append(visits, v)
return nil
})
if err != nil {
t.Fatalf("err: %s", err)
}
expected := [][]Vertex{
{1, 2, 3},
{2, 1, 3},
}
for _, e := range expected {
if reflect.DeepEqual(visits, e) {
return
}
}
t.Fatalf("bad: %#v", visits)
}
func TestAcyclicGraphWalk_error(t *testing.T) {
var g AcyclicGraph
g.Add(1)
g.Add(2)
g.Add(3)
g.Add(4)
g.Connect(BasicEdge(4, 3))
g.Connect(BasicEdge(3, 2))
g.Connect(BasicEdge(2, 1))
var visits []Vertex
var lock sync.Mutex
err := g.Walk(func(v Vertex) tfdiags.Diagnostics {
lock.Lock()
defer lock.Unlock()
var diags tfdiags.Diagnostics
if v == 2 {
diags = diags.Append(fmt.Errorf("error"))
return diags
}
visits = append(visits, v)
return diags
})
if err == nil {
t.Fatal("should error")
}
expected := []Vertex{1}
if !reflect.DeepEqual(visits, expected) {
t.Errorf("wrong visits\ngot: %#v\nwant: %#v", visits, expected)
}
}
func BenchmarkDAG(b *testing.B) {
for i := 0; i < b.N; i++ {
count := 150
b.StopTimer()
g := &AcyclicGraph{}
// create 4 layers of fully connected nodes
// layer A
for i := 0; i < count; i++ {
g.Add(fmt.Sprintf("A%d", i))
}
// layer B
for i := 0; i < count; i++ {
B := fmt.Sprintf("B%d", i)
g.Add(B)
for j := 0; j < count; j++ {
g.Connect(BasicEdge(B, fmt.Sprintf("A%d", j)))
}
}
// layer C
for i := 0; i < count; i++ {
c := fmt.Sprintf("C%d", i)
g.Add(c)
for j := 0; j < count; j++ {
// connect them to previous layers so we have something that requires reduction
g.Connect(BasicEdge(c, fmt.Sprintf("A%d", j)))
g.Connect(BasicEdge(c, fmt.Sprintf("B%d", j)))
}
}
// layer D
for i := 0; i < count; i++ {
d := fmt.Sprintf("D%d", i)
g.Add(d)
for j := 0; j < count; j++ {
g.Connect(BasicEdge(d, fmt.Sprintf("A%d", j)))
g.Connect(BasicEdge(d, fmt.Sprintf("B%d", j)))
g.Connect(BasicEdge(d, fmt.Sprintf("C%d", j)))
}
}
b.StartTimer()
// Find dependencies for every node
for _, v := range g.Vertices() {
_, err := g.Ancestors(v)
if err != nil {
b.Fatal(err)
}
}
// reduce the final graph
g.TransitiveReduction()
}
}
func TestAcyclicGraph_ReverseDepthFirstWalk_WithRemoval(t *testing.T) {
var g AcyclicGraph
g.Add(1)
g.Add(2)
g.Add(3)
g.Connect(BasicEdge(3, 2))
g.Connect(BasicEdge(2, 1))
var visits []Vertex
var lock sync.Mutex
err := g.SortedReverseDepthFirstWalk([]Vertex{1}, func(v Vertex, d int) error {
lock.Lock()
defer lock.Unlock()
visits = append(visits, v)
g.Remove(v)
return nil
})
if err != nil {
t.Fatalf("err: %s", err)
}
expected := []Vertex{1, 2, 3}
if !reflect.DeepEqual(visits, expected) {
t.Fatalf("expected: %#v, got: %#v", expected, visits)
}
}
const testGraphTransReductionStr = `
1
2
2
3
3
`
const testGraphTransReductionMoreStr = `
1
2
2
3
3
4
4
`