opentofu/internal/states/sync.go
Dmitry Kisler a127607a85
Rename terraform to tofu in GoString method and docstrings (#576)
Signed-off-by: Dmitry Kisler <admin@dkisler.com>
2023-09-26 19:09:27 +02:00

577 lines
20 KiB
Go

// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package states
import (
"log"
"sync"
"github.com/opentofu/opentofu/internal/addrs"
"github.com/opentofu/opentofu/internal/checks"
"github.com/zclconf/go-cty/cty"
)
// SyncState is a wrapper around State that provides concurrency-safe access to
// various common operations that occur during a OpenTofu graph walk, or other
// similar concurrent contexts.
//
// When a SyncState wrapper is in use, no concurrent direct access to the
// underlying objects is permitted unless the caller first acquires an explicit
// lock, using the Lock and Unlock methods. Most callers should _not_
// explicitly lock, and should instead use the other methods of this type that
// handle locking automatically.
//
// Since SyncState is able to safely consolidate multiple updates into a single
// atomic operation, many of its methods are at a higher level than those
// of the underlying types, and operate on the state as a whole rather than
// on individual sub-structures of the state.
//
// SyncState can only protect against races within its own methods. It cannot
// provide any guarantees about the order in which concurrent operations will
// be processed, so callers may still need to employ higher-level techniques
// for ensuring correct operation sequencing, such as building and walking
// a dependency graph.
type SyncState struct {
state *State
lock sync.RWMutex
}
// Module returns a snapshot of the state of the module instance with the given
// address, or nil if no such module is tracked.
//
// The return value is a pointer to a copy of the module state, which the
// caller may then freely access and mutate. However, since the module state
// tends to be a large data structure with many child objects, where possible
// callers should prefer to use a more granular accessor to access a child
// module directly, and thus reduce the amount of copying required.
func (s *SyncState) Module(addr addrs.ModuleInstance) *Module {
s.lock.RLock()
ret := s.state.Module(addr).DeepCopy()
s.lock.RUnlock()
return ret
}
// ModuleOutputs returns the set of OutputValues that matches the given path.
func (s *SyncState) ModuleOutputs(parentAddr addrs.ModuleInstance, module addrs.ModuleCall) []*OutputValue {
s.lock.RLock()
defer s.lock.RUnlock()
var os []*OutputValue
for _, o := range s.state.ModuleOutputs(parentAddr, module) {
os = append(os, o.DeepCopy())
}
return os
}
// RemoveModule removes the entire state for the given module, taking with
// it any resources associated with the module. This should generally be
// called only for modules whose resources have all been destroyed, but
// that is not enforced by this method.
func (s *SyncState) RemoveModule(addr addrs.ModuleInstance) {
s.lock.Lock()
defer s.lock.Unlock()
s.state.RemoveModule(addr)
}
// OutputValue returns a snapshot of the state of the output value with the
// given address, or nil if no such output value is tracked.
//
// The return value is a pointer to a copy of the output value state, which the
// caller may then freely access and mutate.
func (s *SyncState) OutputValue(addr addrs.AbsOutputValue) *OutputValue {
s.lock.RLock()
ret := s.state.OutputValue(addr).DeepCopy()
s.lock.RUnlock()
return ret
}
// SetOutputValue writes a given output value into the state, overwriting
// any existing value of the same name.
//
// If the module containing the output is not yet tracked in state then it
// be added as a side-effect.
func (s *SyncState) SetOutputValue(addr addrs.AbsOutputValue, value cty.Value, sensitive bool) {
s.lock.Lock()
defer s.lock.Unlock()
ms := s.state.EnsureModule(addr.Module)
ms.SetOutputValue(addr.OutputValue.Name, value, sensitive)
}
// RemoveOutputValue removes the stored value for the output value with the
// given address.
//
// If this results in its containing module being empty, the module will be
// pruned from the state as a side-effect.
func (s *SyncState) RemoveOutputValue(addr addrs.AbsOutputValue) {
s.lock.Lock()
defer s.lock.Unlock()
ms := s.state.Module(addr.Module)
if ms == nil {
return
}
ms.RemoveOutputValue(addr.OutputValue.Name)
s.maybePruneModule(addr.Module)
}
// LocalValue returns the current value associated with the given local value
// address.
func (s *SyncState) LocalValue(addr addrs.AbsLocalValue) cty.Value {
s.lock.RLock()
// cty.Value is immutable, so we don't need any extra copying here.
ret := s.state.LocalValue(addr)
s.lock.RUnlock()
return ret
}
// SetLocalValue writes a given output value into the state, overwriting
// any existing value of the same name.
//
// If the module containing the local value is not yet tracked in state then it
// will be added as a side-effect.
func (s *SyncState) SetLocalValue(addr addrs.AbsLocalValue, value cty.Value) {
s.lock.Lock()
defer s.lock.Unlock()
ms := s.state.EnsureModule(addr.Module)
ms.SetLocalValue(addr.LocalValue.Name, value)
}
// RemoveLocalValue removes the stored value for the local value with the
// given address.
//
// If this results in its containing module being empty, the module will be
// pruned from the state as a side-effect.
func (s *SyncState) RemoveLocalValue(addr addrs.AbsLocalValue) {
s.lock.Lock()
defer s.lock.Unlock()
ms := s.state.Module(addr.Module)
if ms == nil {
return
}
ms.RemoveLocalValue(addr.LocalValue.Name)
s.maybePruneModule(addr.Module)
}
// Resource returns a snapshot of the state of the resource with the given
// address, or nil if no such resource is tracked.
//
// The return value is a pointer to a copy of the resource state, which the
// caller may then freely access and mutate.
func (s *SyncState) Resource(addr addrs.AbsResource) *Resource {
s.lock.RLock()
ret := s.state.Resource(addr).DeepCopy()
s.lock.RUnlock()
return ret
}
// ResourceInstance returns a snapshot of the state the resource instance with
// the given address, or nil if no such instance is tracked.
//
// The return value is a pointer to a copy of the instance state, which the
// caller may then freely access and mutate.
func (s *SyncState) ResourceInstance(addr addrs.AbsResourceInstance) *ResourceInstance {
s.lock.RLock()
ret := s.state.ResourceInstance(addr).DeepCopy()
s.lock.RUnlock()
return ret
}
// ResourceInstanceObject returns a snapshot of the current instance object
// of the given generation belonging to the instance with the given address,
// or nil if no such object is tracked..
//
// The return value is a pointer to a copy of the object, which the caller may
// then freely access and mutate.
func (s *SyncState) ResourceInstanceObject(addr addrs.AbsResourceInstance, gen Generation) *ResourceInstanceObjectSrc {
s.lock.RLock()
defer s.lock.RUnlock()
inst := s.state.ResourceInstance(addr)
if inst == nil {
return nil
}
return inst.GetGeneration(gen).DeepCopy()
}
// SetResourceMeta updates the resource-level metadata for the resource at
// the given address, creating the containing module state and resource state
// as a side-effect if not already present.
func (s *SyncState) SetResourceProvider(addr addrs.AbsResource, provider addrs.AbsProviderConfig) {
s.lock.Lock()
defer s.lock.Unlock()
ms := s.state.EnsureModule(addr.Module)
ms.SetResourceProvider(addr.Resource, provider)
}
// RemoveResource removes the entire state for the given resource, taking with
// it any instances associated with the resource. This should generally be
// called only for resource objects whose instances have all been destroyed,
// but that is not enforced by this method. (Use RemoveResourceIfEmpty instead
// to safely check first.)
func (s *SyncState) RemoveResource(addr addrs.AbsResource) {
s.lock.Lock()
defer s.lock.Unlock()
ms := s.state.EnsureModule(addr.Module)
ms.RemoveResource(addr.Resource)
s.maybePruneModule(addr.Module)
}
// RemoveResourceIfEmpty is similar to RemoveResource but first checks to
// make sure there are no instances or objects left in the resource.
//
// Returns true if the resource was removed, or false if remaining child
// objects prevented its removal. Returns true also if the resource was
// already absent, and thus no action needed to be taken.
func (s *SyncState) RemoveResourceIfEmpty(addr addrs.AbsResource) bool {
s.lock.Lock()
defer s.lock.Unlock()
ms := s.state.Module(addr.Module)
if ms == nil {
return true // nothing to do
}
rs := ms.Resource(addr.Resource)
if rs == nil {
return true // nothing to do
}
if len(rs.Instances) != 0 {
// We don't check here for the possibility of instances that exist
// but don't have any objects because it's the responsibility of the
// instance-mutation methods to prune those away automatically.
return false
}
ms.RemoveResource(addr.Resource)
s.maybePruneModule(addr.Module)
return true
}
// SetResourceInstanceCurrent saves the given instance object as the current
// generation of the resource instance with the given address, simultaneously
// updating the recorded provider configuration address, dependencies, and
// resource EachMode.
//
// Any existing current instance object for the given resource is overwritten.
// Set obj to nil to remove the primary generation object altogether. If there
// are no deposed objects then the instance as a whole will be removed, which
// may in turn also remove the containing module if it becomes empty.
//
// The caller must ensure that the given ResourceInstanceObject is not
// concurrently mutated during this call, but may be freely used again once
// this function returns.
//
// The provider address is a resource-wide settings and is updated
// for all other instances of the same resource as a side-effect of this call.
//
// If the containing module for this resource or the resource itself are not
// already tracked in state then they will be added as a side-effect.
func (s *SyncState) SetResourceInstanceCurrent(addr addrs.AbsResourceInstance, obj *ResourceInstanceObjectSrc, provider addrs.AbsProviderConfig) {
s.lock.Lock()
defer s.lock.Unlock()
ms := s.state.EnsureModule(addr.Module)
ms.SetResourceInstanceCurrent(addr.Resource, obj.DeepCopy(), provider)
s.maybePruneModule(addr.Module)
}
// SetResourceInstanceDeposed saves the given instance object as a deposed
// generation of the resource instance with the given address and deposed key.
//
// Call this method only for pre-existing deposed objects that already have
// a known DeposedKey. For example, this method is useful if reloading objects
// that were persisted to a state file. To mark the current object as deposed,
// use DeposeResourceInstanceObject instead.
//
// The caller must ensure that the given ResourceInstanceObject is not
// concurrently mutated during this call, but may be freely used again once
// this function returns.
//
// The resource that contains the given instance must already exist in the
// state, or this method will panic. Use Resource to check first if its
// presence is not already guaranteed.
//
// Any existing current instance object for the given resource and deposed key
// is overwritten. Set obj to nil to remove the deposed object altogether. If
// the instance is left with no objects after this operation then it will
// be removed from its containing resource altogether.
//
// If the containing module for this resource or the resource itself are not
// already tracked in state then they will be added as a side-effect.
func (s *SyncState) SetResourceInstanceDeposed(addr addrs.AbsResourceInstance, key DeposedKey, obj *ResourceInstanceObjectSrc, provider addrs.AbsProviderConfig) {
s.lock.Lock()
defer s.lock.Unlock()
ms := s.state.EnsureModule(addr.Module)
ms.SetResourceInstanceDeposed(addr.Resource, key, obj.DeepCopy(), provider)
s.maybePruneModule(addr.Module)
}
// DeposeResourceInstanceObject moves the current instance object for the
// given resource instance address into the deposed set, leaving the instance
// without a current object.
//
// The return value is the newly-allocated deposed key, or NotDeposed if the
// given instance is already lacking a current object.
//
// If the containing module for this resource or the resource itself are not
// already tracked in state then there cannot be a current object for the
// given instance, and so NotDeposed will be returned without modifying the
// state at all.
func (s *SyncState) DeposeResourceInstanceObject(addr addrs.AbsResourceInstance) DeposedKey {
s.lock.Lock()
defer s.lock.Unlock()
ms := s.state.Module(addr.Module)
if ms == nil {
return NotDeposed
}
return ms.deposeResourceInstanceObject(addr.Resource, NotDeposed)
}
// DeposeResourceInstanceObjectForceKey is like DeposeResourceInstanceObject
// but uses a pre-allocated key. It's the caller's responsibility to ensure
// that there aren't any races to use a particular key; this method will panic
// if the given key is already in use.
func (s *SyncState) DeposeResourceInstanceObjectForceKey(addr addrs.AbsResourceInstance, forcedKey DeposedKey) {
s.lock.Lock()
defer s.lock.Unlock()
if forcedKey == NotDeposed {
// Usage error: should use DeposeResourceInstanceObject in this case
panic("DeposeResourceInstanceObjectForceKey called without forced key")
}
ms := s.state.Module(addr.Module)
if ms == nil {
return // Nothing to do, since there can't be any current object either.
}
ms.deposeResourceInstanceObject(addr.Resource, forcedKey)
}
// ForgetResourceInstanceAll removes the record of all objects associated with
// the specified resource instance, if present. If not present, this is a no-op.
func (s *SyncState) ForgetResourceInstanceAll(addr addrs.AbsResourceInstance) {
s.lock.Lock()
defer s.lock.Unlock()
ms := s.state.Module(addr.Module)
if ms == nil {
return
}
ms.ForgetResourceInstanceAll(addr.Resource)
s.maybePruneModule(addr.Module)
}
// ForgetResourceInstanceDeposed removes the record of the deposed object with
// the given address and key, if present. If not present, this is a no-op.
func (s *SyncState) ForgetResourceInstanceDeposed(addr addrs.AbsResourceInstance, key DeposedKey) {
s.lock.Lock()
defer s.lock.Unlock()
ms := s.state.Module(addr.Module)
if ms == nil {
return
}
ms.ForgetResourceInstanceDeposed(addr.Resource, key)
s.maybePruneModule(addr.Module)
}
// MaybeRestoreResourceInstanceDeposed will restore the deposed object with the
// given key on the specified resource as the current object for that instance
// if and only if that would not cause us to forget an existing current
// object for that instance.
//
// Returns true if the object was restored to current, or false if no change
// was made at all.
func (s *SyncState) MaybeRestoreResourceInstanceDeposed(addr addrs.AbsResourceInstance, key DeposedKey) bool {
s.lock.Lock()
defer s.lock.Unlock()
if key == NotDeposed {
panic("MaybeRestoreResourceInstanceDeposed called without DeposedKey")
}
ms := s.state.Module(addr.Module)
if ms == nil {
// Nothing to do, since the specified deposed object cannot exist.
return false
}
return ms.maybeRestoreResourceInstanceDeposed(addr.Resource, key)
}
// RemovePlannedResourceInstanceObjects removes from the state any resource
// instance objects that have the status ObjectPlanned, indiciating that they
// are just transient placeholders created during planning.
//
// Note that this does not restore any "ready" or "tainted" object that might
// have been present before the planned object was written. The only real use
// for this method is in preparing the state created during a refresh walk,
// where we run the planning step for certain instances just to create enough
// information to allow correct expression evaluation within provider and
// data resource blocks. Discarding planned instances in that case is okay
// because the refresh phase only creates planned objects to stand in for
// objects that don't exist yet, and thus the planned object must have been
// absent before by definition.
func (s *SyncState) RemovePlannedResourceInstanceObjects() {
// TODO: Merge together the refresh and plan phases into a single walk,
// so we can remove the need to create this "partial plan" during refresh
// that we then need to clean up before proceeding.
s.lock.Lock()
defer s.lock.Unlock()
for _, ms := range s.state.Modules {
moduleAddr := ms.Addr
for _, rs := range ms.Resources {
resAddr := rs.Addr.Resource
for ik, is := range rs.Instances {
instAddr := resAddr.Instance(ik)
if is.Current != nil && is.Current.Status == ObjectPlanned {
// Setting the current instance to nil removes it from the
// state altogether if there are not also deposed instances.
ms.SetResourceInstanceCurrent(instAddr, nil, rs.ProviderConfig)
}
for dk, obj := range is.Deposed {
// Deposed objects should never be "planned", but we'll
// do this anyway for the sake of completeness.
if obj.Status == ObjectPlanned {
ms.ForgetResourceInstanceDeposed(instAddr, dk)
}
}
}
}
// We may have deleted some objects, which means that we may have
// left a module empty, and so we must prune to preserve the invariant
// that only the root module is allowed to be empty.
s.maybePruneModule(moduleAddr)
}
}
// DiscardCheckResults discards any previously-recorded check results, with
// the intent of preventing any references to them after they have become
// stale due to starting (but possibly not completing) an update.
func (s *SyncState) DiscardCheckResults() {
s.lock.Lock()
s.state.CheckResults = nil
s.lock.Unlock()
}
// RecordCheckResults replaces any check results already recorded in the state
// with a new set taken from the given check state object.
func (s *SyncState) RecordCheckResults(checkState *checks.State) {
newResults := NewCheckResults(checkState)
s.lock.Lock()
s.state.CheckResults = newResults
s.lock.Unlock()
}
// Lock acquires an explicit lock on the state, allowing direct read and write
// access to the returned state object. The caller must call Unlock once
// access is no longer needed, and then immediately discard the state pointer
// pointer.
//
// Most callers should not use this. Instead, use the concurrency-safe
// accessors and mutators provided directly on SyncState.
func (s *SyncState) Lock() *State {
s.lock.Lock()
return s.state
}
// Unlock releases a lock previously acquired by Lock, at which point the
// caller must cease all use of the state pointer that was returned.
//
// Do not call this method except to end an explicit lock acquired by
// Lock. If a caller calls Unlock without first holding the lock, behavior
// is undefined.
func (s *SyncState) Unlock() {
s.lock.Unlock()
}
// Close extracts the underlying state from inside this wrapper, making the
// wrapper invalid for any future operations.
func (s *SyncState) Close() *State {
s.lock.Lock()
ret := s.state
s.state = nil // make sure future operations can't still modify it
s.lock.Unlock()
return ret
}
// maybePruneModule will remove a module from the state altogether if it is
// empty, unless it's the root module which must always be present.
//
// This helper method is not concurrency-safe on its own, so must only be
// called while the caller is already holding the lock for writing.
func (s *SyncState) maybePruneModule(addr addrs.ModuleInstance) {
if addr.IsRoot() {
// We never prune the root.
return
}
ms := s.state.Module(addr)
if ms == nil {
return
}
if ms.empty() {
log.Printf("[TRACE] states.SyncState: pruning %s because it is empty", addr)
s.state.RemoveModule(addr)
}
}
func (s *SyncState) MoveAbsResource(src, dst addrs.AbsResource) {
s.lock.Lock()
defer s.lock.Unlock()
s.state.MoveAbsResource(src, dst)
}
func (s *SyncState) MaybeMoveAbsResource(src, dst addrs.AbsResource) bool {
s.lock.Lock()
defer s.lock.Unlock()
return s.state.MaybeMoveAbsResource(src, dst)
}
func (s *SyncState) MoveResourceInstance(src, dst addrs.AbsResourceInstance) {
s.lock.Lock()
defer s.lock.Unlock()
s.state.MoveAbsResourceInstance(src, dst)
}
func (s *SyncState) MaybeMoveResourceInstance(src, dst addrs.AbsResourceInstance) bool {
s.lock.Lock()
defer s.lock.Unlock()
return s.state.MaybeMoveAbsResourceInstance(src, dst)
}
func (s *SyncState) MoveModuleInstance(src, dst addrs.ModuleInstance) {
s.lock.Lock()
defer s.lock.Unlock()
s.state.MoveModuleInstance(src, dst)
}
func (s *SyncState) MaybeMoveModuleInstance(src, dst addrs.ModuleInstance) bool {
s.lock.Lock()
defer s.lock.Unlock()
return s.state.MaybeMoveModuleInstance(src, dst)
}