opentofu/terraform/graph_builder_refresh.go
James Bardin 0dcca1bc37 make the root node a nodeCloseModule for root
Replace the graphNodeRoot for the main graph with a nodeCloseModule for
the root module. USe a new transformer as well, so as to not change any
behavior of DynamicExpand graphs.

Closing out the root module like we do with sub modules means we no
longer need the OrphanResourceTransformer, or the NodeDestroyResource.
The old resource destroy logic has mostly moved into the instance nodes,
and the remaining resource node was just for cleanup, which need to be
done again by the module since there isn't always a NodeDestroyResource
to be evaluated.

The more-correct state caused a few tests to fail, which need to be
cleaned up to match the state without empty resource husks.
2020-04-02 16:00:36 -04:00

201 lines
5.9 KiB
Go

package terraform
import (
"log"
"github.com/hashicorp/terraform/states"
"github.com/hashicorp/terraform/tfdiags"
"github.com/hashicorp/terraform/addrs"
"github.com/hashicorp/terraform/configs"
"github.com/hashicorp/terraform/dag"
)
// RefreshGraphBuilder implements GraphBuilder and is responsible for building
// a graph for refreshing (updating the Terraform state).
//
// The primary difference between this graph and others:
//
// * Based on the state since it represents the only resources that
// need to be refreshed.
//
// * Ignores lifecycle options since no lifecycle events occur here. This
// simplifies the graph significantly since complex transforms such as
// create-before-destroy can be completely ignored.
//
type RefreshGraphBuilder struct {
// Config is the configuration tree.
Config *configs.Config
// State is the prior state
State *states.State
// Components is a factory for the plug-in components (providers and
// provisioners) available for use.
Components contextComponentFactory
// Schemas is the repository of schemas we will draw from to analyse
// the configuration.
Schemas *Schemas
// Targets are resources to target
Targets []addrs.Targetable
// DisableReduce, if true, will not reduce the graph. Great for testing.
DisableReduce bool
// Validate will do structural validation of the graph.
Validate bool
}
// See GraphBuilder
func (b *RefreshGraphBuilder) Build(path addrs.ModuleInstance) (*Graph, tfdiags.Diagnostics) {
return (&BasicGraphBuilder{
Steps: b.Steps(),
Validate: b.Validate,
Name: "RefreshGraphBuilder",
}).Build(path)
}
// See GraphBuilder
func (b *RefreshGraphBuilder) Steps() []GraphTransformer {
// Custom factory for creating providers.
concreteProvider := func(a *NodeAbstractProvider) dag.Vertex {
return &NodeApplyableProvider{
NodeAbstractProvider: a,
}
}
concreteManagedResource := func(a *NodeAbstractResource) dag.Vertex {
return &nodeExpandRefreshableManagedResource{
NodeAbstractResource: a,
}
}
concreteManagedResourceInstance := func(a *NodeAbstractResourceInstance) dag.Vertex {
return &NodeRefreshableManagedResourceInstance{
NodeAbstractResourceInstance: a,
}
}
concreteResourceInstanceDeposed := func(a *NodeAbstractResourceInstance, key states.DeposedKey) dag.Vertex {
// The "Plan" node type also handles refreshing behavior.
return &NodePlanDeposedResourceInstanceObject{
NodeAbstractResourceInstance: a,
DeposedKey: key,
}
}
concreteDataResource := func(a *NodeAbstractResource) dag.Vertex {
return &nodeExpandRefreshableDataResource{
NodeAbstractResource: a,
}
}
steps := []GraphTransformer{
// Creates all the managed resources that aren't in the state, but only if
// we have a state already. No resources in state means there's not
// anything to refresh.
func() GraphTransformer {
if b.State.HasResources() {
return &ConfigTransformer{
Concrete: concreteManagedResource,
Config: b.Config,
Unique: true,
ModeFilter: true,
Mode: addrs.ManagedResourceMode,
}
}
log.Println("[TRACE] No managed resources in state during refresh; skipping managed resource transformer")
return nil
}(),
// Creates all the data resources that aren't in the state. This will also
// add any orphans from scaling in as destroy nodes.
&ConfigTransformer{
Concrete: concreteDataResource,
Config: b.Config,
Unique: true,
ModeFilter: true,
Mode: addrs.DataResourceMode,
},
// Add any fully-orphaned resources from config (ones that have been
// removed completely, not ones that are just orphaned due to a scaled-in
// count.
&OrphanResourceInstanceTransformer{
Concrete: concreteManagedResourceInstance,
State: b.State,
Config: b.Config,
},
// We also need nodes for any deposed instance objects present in the
// state, so we can check if they still exist. (This intentionally
// skips creating nodes for _current_ objects, since ConfigTransformer
// created nodes that will do that during DynamicExpand.)
&StateTransformer{
ConcreteDeposed: concreteResourceInstanceDeposed,
State: b.State,
},
// Attach the state
&AttachStateTransformer{State: b.State},
// Attach the configuration to any resources
&AttachResourceConfigTransformer{Config: b.Config},
// Add root variables
&RootVariableTransformer{Config: b.Config},
// Add the local values
&LocalTransformer{Config: b.Config},
// Add the outputs
&OutputTransformer{Config: b.Config},
// Add module variables
&ModuleVariableTransformer{Config: b.Config},
TransformProviders(b.Components.ResourceProviders(), concreteProvider, b.Config),
// Must attach schemas before ReferenceTransformer so that we can
// analyze the configuration to find references.
&AttachSchemaTransformer{Schemas: b.Schemas, Config: b.Config},
// Create expansion nodes for all of the module calls. This must
// come after all other transformers that create nodes representing
// objects that can belong to modules.
&ModuleExpansionTransformer{Config: b.Config},
// Connect so that the references are ready for targeting. We'll
// have to connect again later for providers and so on.
&ReferenceTransformer{},
&AttachDependenciesTransformer{},
// Target
&TargetsTransformer{
Targets: b.Targets,
// Resource nodes from config have not yet been expanded for
// "count", so we must apply targeting without indices. Exact
// targeting will be dealt with later when these resources
// DynamicExpand.
IgnoreIndices: true,
},
// Close opened plugin connections
&CloseProviderTransformer{},
// Close root module
&CloseRootModuleTransformer{},
}
if !b.DisableReduce {
// Perform the transitive reduction to make our graph a bit
// more sane if possible (it usually is possible).
steps = append(steps, &TransitiveReductionTransformer{})
}
return steps
}