mirror of
https://github.com/opentofu/opentofu.git
synced 2025-01-18 04:32:59 -06:00
31349a9c3a
This is part of a general effort to move all of Terraform's non-library package surface under internal in order to reinforce that these are for internal use within Terraform only. If you were previously importing packages under this prefix into an external codebase, you could pin to an earlier release tag as an interim solution until you've make a plan to achieve the same functionality some other way.
231 lines
6.8 KiB
Go
231 lines
6.8 KiB
Go
package hcl2shim
|
|
|
|
import (
|
|
"fmt"
|
|
"math/big"
|
|
|
|
"github.com/zclconf/go-cty/cty"
|
|
|
|
"github.com/hashicorp/terraform/internal/configs/configschema"
|
|
)
|
|
|
|
// UnknownVariableValue is a sentinel value that can be used
|
|
// to denote that the value of a variable is unknown at this time.
|
|
// RawConfig uses this information to build up data about
|
|
// unknown keys.
|
|
const UnknownVariableValue = "74D93920-ED26-11E3-AC10-0800200C9A66"
|
|
|
|
// ConfigValueFromHCL2Block is like ConfigValueFromHCL2 but it works only for
|
|
// known object values and uses the provided block schema to perform some
|
|
// additional normalization to better mimic the shape of value that the old
|
|
// HCL1/HIL-based codepaths would've produced.
|
|
//
|
|
// In particular, it discards the collections that we use to represent nested
|
|
// blocks (other than NestingSingle) if they are empty, which better mimics
|
|
// the HCL1 behavior because HCL1 had no knowledge of the schema and so didn't
|
|
// know that an unspecified block _could_ exist.
|
|
//
|
|
// The given object value must conform to the schema's implied type or this
|
|
// function will panic or produce incorrect results.
|
|
//
|
|
// This is primarily useful for the final transition from new-style values to
|
|
// terraform.ResourceConfig before calling to a legacy provider, since
|
|
// helper/schema (the old provider SDK) is particularly sensitive to these
|
|
// subtle differences within its validation code.
|
|
func ConfigValueFromHCL2Block(v cty.Value, schema *configschema.Block) map[string]interface{} {
|
|
if v.IsNull() {
|
|
return nil
|
|
}
|
|
if !v.IsKnown() {
|
|
panic("ConfigValueFromHCL2Block used with unknown value")
|
|
}
|
|
if !v.Type().IsObjectType() {
|
|
panic(fmt.Sprintf("ConfigValueFromHCL2Block used with non-object value %#v", v))
|
|
}
|
|
|
|
atys := v.Type().AttributeTypes()
|
|
ret := make(map[string]interface{})
|
|
|
|
for name := range schema.Attributes {
|
|
if _, exists := atys[name]; !exists {
|
|
continue
|
|
}
|
|
|
|
av := v.GetAttr(name)
|
|
if av.IsNull() {
|
|
// Skip nulls altogether, to better mimic how HCL1 would behave
|
|
continue
|
|
}
|
|
ret[name] = ConfigValueFromHCL2(av)
|
|
}
|
|
|
|
for name, blockS := range schema.BlockTypes {
|
|
if _, exists := atys[name]; !exists {
|
|
continue
|
|
}
|
|
bv := v.GetAttr(name)
|
|
if !bv.IsKnown() {
|
|
ret[name] = UnknownVariableValue
|
|
continue
|
|
}
|
|
if bv.IsNull() {
|
|
continue
|
|
}
|
|
|
|
switch blockS.Nesting {
|
|
|
|
case configschema.NestingSingle, configschema.NestingGroup:
|
|
ret[name] = ConfigValueFromHCL2Block(bv, &blockS.Block)
|
|
|
|
case configschema.NestingList, configschema.NestingSet:
|
|
l := bv.LengthInt()
|
|
if l == 0 {
|
|
// skip empty collections to better mimic how HCL1 would behave
|
|
continue
|
|
}
|
|
|
|
elems := make([]interface{}, 0, l)
|
|
for it := bv.ElementIterator(); it.Next(); {
|
|
_, ev := it.Element()
|
|
if !ev.IsKnown() {
|
|
elems = append(elems, UnknownVariableValue)
|
|
continue
|
|
}
|
|
elems = append(elems, ConfigValueFromHCL2Block(ev, &blockS.Block))
|
|
}
|
|
ret[name] = elems
|
|
|
|
case configschema.NestingMap:
|
|
if bv.LengthInt() == 0 {
|
|
// skip empty collections to better mimic how HCL1 would behave
|
|
continue
|
|
}
|
|
|
|
elems := make(map[string]interface{})
|
|
for it := bv.ElementIterator(); it.Next(); {
|
|
ek, ev := it.Element()
|
|
if !ev.IsKnown() {
|
|
elems[ek.AsString()] = UnknownVariableValue
|
|
continue
|
|
}
|
|
elems[ek.AsString()] = ConfigValueFromHCL2Block(ev, &blockS.Block)
|
|
}
|
|
ret[name] = elems
|
|
}
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
// ConfigValueFromHCL2 converts a value from HCL2 (really, from the cty dynamic
|
|
// types library that HCL2 uses) to a value type that matches what would've
|
|
// been produced from the HCL-based interpolator for an equivalent structure.
|
|
//
|
|
// This function will transform a cty null value into a Go nil value, which
|
|
// isn't a possible outcome of the HCL/HIL-based decoder and so callers may
|
|
// need to detect and reject any null values.
|
|
func ConfigValueFromHCL2(v cty.Value) interface{} {
|
|
if !v.IsKnown() {
|
|
return UnknownVariableValue
|
|
}
|
|
if v.IsNull() {
|
|
return nil
|
|
}
|
|
|
|
switch v.Type() {
|
|
case cty.Bool:
|
|
return v.True() // like HCL.BOOL
|
|
case cty.String:
|
|
return v.AsString() // like HCL token.STRING or token.HEREDOC
|
|
case cty.Number:
|
|
// We can't match HCL _exactly_ here because it distinguishes between
|
|
// int and float values, but we'll get as close as we can by using
|
|
// an int if the number is exactly representable, and a float if not.
|
|
// The conversion to float will force precision to that of a float64,
|
|
// which is potentially losing information from the specific number
|
|
// given, but no worse than what HCL would've done in its own conversion
|
|
// to float.
|
|
|
|
f := v.AsBigFloat()
|
|
if i, acc := f.Int64(); acc == big.Exact {
|
|
// if we're on a 32-bit system and the number is too big for 32-bit
|
|
// int then we'll fall through here and use a float64.
|
|
const MaxInt = int(^uint(0) >> 1)
|
|
const MinInt = -MaxInt - 1
|
|
if i <= int64(MaxInt) && i >= int64(MinInt) {
|
|
return int(i) // Like HCL token.NUMBER
|
|
}
|
|
}
|
|
|
|
f64, _ := f.Float64()
|
|
return f64 // like HCL token.FLOAT
|
|
}
|
|
|
|
if v.Type().IsListType() || v.Type().IsSetType() || v.Type().IsTupleType() {
|
|
l := make([]interface{}, 0, v.LengthInt())
|
|
it := v.ElementIterator()
|
|
for it.Next() {
|
|
_, ev := it.Element()
|
|
l = append(l, ConfigValueFromHCL2(ev))
|
|
}
|
|
return l
|
|
}
|
|
|
|
if v.Type().IsMapType() || v.Type().IsObjectType() {
|
|
l := make(map[string]interface{})
|
|
it := v.ElementIterator()
|
|
for it.Next() {
|
|
ek, ev := it.Element()
|
|
cv := ConfigValueFromHCL2(ev)
|
|
if cv != nil {
|
|
l[ek.AsString()] = cv
|
|
}
|
|
}
|
|
return l
|
|
}
|
|
|
|
// If we fall out here then we have some weird type that we haven't
|
|
// accounted for. This should never happen unless the caller is using
|
|
// capsule types, and we don't currently have any such types defined.
|
|
panic(fmt.Errorf("can't convert %#v to config value", v))
|
|
}
|
|
|
|
// HCL2ValueFromConfigValue is the opposite of configValueFromHCL2: it takes
|
|
// a value as would be returned from the old interpolator and turns it into
|
|
// a cty.Value so it can be used within, for example, an HCL2 EvalContext.
|
|
func HCL2ValueFromConfigValue(v interface{}) cty.Value {
|
|
if v == nil {
|
|
return cty.NullVal(cty.DynamicPseudoType)
|
|
}
|
|
if v == UnknownVariableValue {
|
|
return cty.DynamicVal
|
|
}
|
|
|
|
switch tv := v.(type) {
|
|
case bool:
|
|
return cty.BoolVal(tv)
|
|
case string:
|
|
return cty.StringVal(tv)
|
|
case int:
|
|
return cty.NumberIntVal(int64(tv))
|
|
case float64:
|
|
return cty.NumberFloatVal(tv)
|
|
case []interface{}:
|
|
vals := make([]cty.Value, len(tv))
|
|
for i, ev := range tv {
|
|
vals[i] = HCL2ValueFromConfigValue(ev)
|
|
}
|
|
return cty.TupleVal(vals)
|
|
case map[string]interface{}:
|
|
vals := map[string]cty.Value{}
|
|
for k, ev := range tv {
|
|
vals[k] = HCL2ValueFromConfigValue(ev)
|
|
}
|
|
return cty.ObjectVal(vals)
|
|
default:
|
|
// HCL/HIL should never generate anything that isn't caught by
|
|
// the above, so if we get here something has gone very wrong.
|
|
panic(fmt.Errorf("can't convert %#v to cty.Value", v))
|
|
}
|
|
}
|