opentofu/config/config.go
Martin Atkins 60c24e3319 command: Prevent data resources from being tainted
Since the data resource lifecycle contains no steps to deal with tainted
instances, we must make sure that they never get created.

Doing this out in the command layer is not the best, but this is currently
the only layer that has enough information to make this decision and so
this simple solution was preferred over a more disruptive refactoring,
under the assumption that this taint functionality eventually gets
reworked in terms of StateFilter anyway.
2016-05-14 08:26:37 -07:00

952 lines
23 KiB
Go

// The config package is responsible for loading and validating the
// configuration.
package config
import (
"fmt"
"regexp"
"strconv"
"strings"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/hil"
"github.com/hashicorp/hil/ast"
"github.com/mitchellh/mapstructure"
"github.com/mitchellh/reflectwalk"
)
// NameRegexp is the regular expression that all names (modules, providers,
// resources, etc.) must follow.
var NameRegexp = regexp.MustCompile(`\A[A-Za-z0-9\-\_]+\z`)
// Config is the configuration that comes from loading a collection
// of Terraform templates.
type Config struct {
// Dir is the path to the directory where this configuration was
// loaded from. If it is blank, this configuration wasn't loaded from
// any meaningful directory.
Dir string
Atlas *AtlasConfig
Modules []*Module
ProviderConfigs []*ProviderConfig
Resources []*Resource
Variables []*Variable
Outputs []*Output
// The fields below can be filled in by loaders for validation
// purposes.
unknownKeys []string
}
// AtlasConfig is the configuration for building in HashiCorp's Atlas.
type AtlasConfig struct {
Name string
Include []string
Exclude []string
}
// Module is a module used within a configuration.
//
// This does not represent a module itself, this represents a module
// call-site within an existing configuration.
type Module struct {
Name string
Source string
RawConfig *RawConfig
}
// ProviderConfig is the configuration for a resource provider.
//
// For example, Terraform needs to set the AWS access keys for the AWS
// resource provider.
type ProviderConfig struct {
Name string
Alias string
RawConfig *RawConfig
}
// A resource represents a single Terraform resource in the configuration.
// A Terraform resource is something that supports some or all of the
// usual "create, read, update, delete" operations, depending on
// the given Mode.
type Resource struct {
Mode ResourceMode // which operations the resource supports
Name string
Type string
RawCount *RawConfig
RawConfig *RawConfig
Provisioners []*Provisioner
Provider string
DependsOn []string
Lifecycle ResourceLifecycle
}
// Copy returns a copy of this Resource. Helpful for avoiding shared
// config pointers across multiple pieces of the graph that need to do
// interpolation.
func (r *Resource) Copy() *Resource {
n := &Resource{
Mode: r.Mode,
Name: r.Name,
Type: r.Type,
RawCount: r.RawCount.Copy(),
RawConfig: r.RawConfig.Copy(),
Provisioners: make([]*Provisioner, 0, len(r.Provisioners)),
Provider: r.Provider,
DependsOn: make([]string, len(r.DependsOn)),
Lifecycle: *r.Lifecycle.Copy(),
}
for _, p := range r.Provisioners {
n.Provisioners = append(n.Provisioners, p.Copy())
}
copy(n.DependsOn, r.DependsOn)
return n
}
// ResourceLifecycle is used to store the lifecycle tuning parameters
// to allow customized behavior
type ResourceLifecycle struct {
CreateBeforeDestroy bool `mapstructure:"create_before_destroy"`
PreventDestroy bool `mapstructure:"prevent_destroy"`
IgnoreChanges []string `mapstructure:"ignore_changes"`
}
// Copy returns a copy of this ResourceLifecycle
func (r *ResourceLifecycle) Copy() *ResourceLifecycle {
n := &ResourceLifecycle{
CreateBeforeDestroy: r.CreateBeforeDestroy,
PreventDestroy: r.PreventDestroy,
IgnoreChanges: make([]string, len(r.IgnoreChanges)),
}
copy(n.IgnoreChanges, r.IgnoreChanges)
return n
}
// Provisioner is a configured provisioner step on a resource.
type Provisioner struct {
Type string
RawConfig *RawConfig
ConnInfo *RawConfig
}
// Copy returns a copy of this Provisioner
func (p *Provisioner) Copy() *Provisioner {
return &Provisioner{
Type: p.Type,
RawConfig: p.RawConfig.Copy(),
ConnInfo: p.ConnInfo.Copy(),
}
}
// Variable is a variable defined within the configuration.
type Variable struct {
Name string
DeclaredType string `mapstructure:"type"`
Default interface{}
Description string
}
// Output is an output defined within the configuration. An output is
// resulting data that is highlighted by Terraform when finished. An
// output marked Sensitive will be output in a masked form following
// application, but will still be available in state.
type Output struct {
Name string
Sensitive bool
RawConfig *RawConfig
}
// VariableType is the type of value a variable is holding, and returned
// by the Type() function on variables.
type VariableType byte
const (
VariableTypeUnknown VariableType = iota
VariableTypeString
VariableTypeList
VariableTypeMap
)
func (v VariableType) Printable() string {
switch v {
case VariableTypeString:
return "string"
case VariableTypeMap:
return "map"
case VariableTypeList:
return "list"
default:
return "unknown"
}
}
// ProviderConfigName returns the name of the provider configuration in
// the given mapping that maps to the proper provider configuration
// for this resource.
func ProviderConfigName(t string, pcs []*ProviderConfig) string {
lk := ""
for _, v := range pcs {
k := v.Name
if strings.HasPrefix(t, k) && len(k) > len(lk) {
lk = k
}
}
return lk
}
// A unique identifier for this module.
func (r *Module) Id() string {
return fmt.Sprintf("%s", r.Name)
}
// Count returns the count of this resource.
func (r *Resource) Count() (int, error) {
v, err := strconv.ParseInt(r.RawCount.Value().(string), 0, 0)
if err != nil {
return 0, err
}
return int(v), nil
}
// A unique identifier for this resource.
func (r *Resource) Id() string {
switch r.Mode {
case ManagedResourceMode:
return fmt.Sprintf("%s.%s", r.Type, r.Name)
case DataResourceMode:
return fmt.Sprintf("data.%s.%s", r.Type, r.Name)
default:
panic(fmt.Errorf("unknown resource mode %s", r.Mode))
}
}
// Validate does some basic semantic checking of the configuration.
func (c *Config) Validate() error {
if c == nil {
return nil
}
var errs []error
for _, k := range c.unknownKeys {
errs = append(errs, fmt.Errorf(
"Unknown root level key: %s", k))
}
vars := c.InterpolatedVariables()
varMap := make(map[string]*Variable)
for _, v := range c.Variables {
varMap[v.Name] = v
}
for _, v := range c.Variables {
if v.Type() == VariableTypeUnknown {
errs = append(errs, fmt.Errorf(
"Variable '%s': must be a string or a map",
v.Name))
continue
}
interp := false
fn := func(ast.Node) (interface{}, error) {
interp = true
return "", nil
}
w := &interpolationWalker{F: fn}
if v.Default != nil {
if err := reflectwalk.Walk(v.Default, w); err == nil {
if interp {
errs = append(errs, fmt.Errorf(
"Variable '%s': cannot contain interpolations",
v.Name))
}
}
}
}
// Check for references to user variables that do not actually
// exist and record those errors.
for source, vs := range vars {
for _, v := range vs {
uv, ok := v.(*UserVariable)
if !ok {
continue
}
if _, ok := varMap[uv.Name]; !ok {
errs = append(errs, fmt.Errorf(
"%s: unknown variable referenced: '%s'. define it with 'variable' blocks",
source,
uv.Name))
}
}
}
// Check that all count variables are valid.
for source, vs := range vars {
for _, rawV := range vs {
switch v := rawV.(type) {
case *CountVariable:
if v.Type == CountValueInvalid {
errs = append(errs, fmt.Errorf(
"%s: invalid count variable: %s",
source,
v.FullKey()))
}
case *PathVariable:
if v.Type == PathValueInvalid {
errs = append(errs, fmt.Errorf(
"%s: invalid path variable: %s",
source,
v.FullKey()))
}
}
}
}
// Check that providers aren't declared multiple times.
providerSet := make(map[string]struct{})
for _, p := range c.ProviderConfigs {
name := p.FullName()
if _, ok := providerSet[name]; ok {
errs = append(errs, fmt.Errorf(
"provider.%s: declared multiple times, you can only declare a provider once",
name))
continue
}
providerSet[name] = struct{}{}
}
// Check that all references to modules are valid
modules := make(map[string]*Module)
dupped := make(map[string]struct{})
for _, m := range c.Modules {
// Check for duplicates
if _, ok := modules[m.Id()]; ok {
if _, ok := dupped[m.Id()]; !ok {
dupped[m.Id()] = struct{}{}
errs = append(errs, fmt.Errorf(
"%s: module repeated multiple times",
m.Id()))
}
// Already seen this module, just skip it
continue
}
modules[m.Id()] = m
// Check that the source has no interpolations
rc, err := NewRawConfig(map[string]interface{}{
"root": m.Source,
})
if err != nil {
errs = append(errs, fmt.Errorf(
"%s: module source error: %s",
m.Id(), err))
} else if len(rc.Interpolations) > 0 {
errs = append(errs, fmt.Errorf(
"%s: module source cannot contain interpolations",
m.Id()))
}
// Check that the name matches our regexp
if !NameRegexp.Match([]byte(m.Name)) {
errs = append(errs, fmt.Errorf(
"%s: module name can only contain letters, numbers, "+
"dashes, and underscores",
m.Id()))
}
// Check that the configuration can all be strings, lists or maps
raw := make(map[string]interface{})
for k, v := range m.RawConfig.Raw {
var strVal string
if err := mapstructure.WeakDecode(v, &strVal); err == nil {
raw[k] = strVal
continue
}
var mapVal map[string]interface{}
if err := mapstructure.WeakDecode(v, &mapVal); err == nil {
raw[k] = mapVal
continue
}
var sliceVal []interface{}
if err := mapstructure.WeakDecode(v, &sliceVal); err == nil {
raw[k] = sliceVal
continue
}
errs = append(errs, fmt.Errorf(
"%s: variable %s must be a string, list or map value",
m.Id(), k))
}
// Check for invalid count variables
for _, v := range m.RawConfig.Variables {
switch v.(type) {
case *CountVariable:
errs = append(errs, fmt.Errorf(
"%s: count variables are only valid within resources", m.Name))
case *SelfVariable:
errs = append(errs, fmt.Errorf(
"%s: self variables are only valid within resources", m.Name))
}
}
// Update the raw configuration to only contain the string values
m.RawConfig, err = NewRawConfig(raw)
if err != nil {
errs = append(errs, fmt.Errorf(
"%s: can't initialize configuration: %s",
m.Id(), err))
}
}
dupped = nil
// Check that all variables for modules reference modules that
// exist.
for source, vs := range vars {
for _, v := range vs {
mv, ok := v.(*ModuleVariable)
if !ok {
continue
}
if _, ok := modules[mv.Name]; !ok {
errs = append(errs, fmt.Errorf(
"%s: unknown module referenced: %s",
source,
mv.Name))
}
}
}
// Check that all references to resources are valid
resources := make(map[string]*Resource)
dupped = make(map[string]struct{})
for _, r := range c.Resources {
if _, ok := resources[r.Id()]; ok {
if _, ok := dupped[r.Id()]; !ok {
dupped[r.Id()] = struct{}{}
errs = append(errs, fmt.Errorf(
"%s: resource repeated multiple times",
r.Id()))
}
}
resources[r.Id()] = r
}
dupped = nil
// Validate resources
for n, r := range resources {
// Verify count variables
for _, v := range r.RawCount.Variables {
switch v.(type) {
case *CountVariable:
errs = append(errs, fmt.Errorf(
"%s: resource count can't reference count variable: %s",
n,
v.FullKey()))
case *ModuleVariable:
errs = append(errs, fmt.Errorf(
"%s: resource count can't reference module variable: %s",
n,
v.FullKey()))
case *ResourceVariable:
errs = append(errs, fmt.Errorf(
"%s: resource count can't reference resource variable: %s",
n,
v.FullKey()))
case *UserVariable:
// Good
default:
panic("Unknown type in count var: " + n)
}
}
// Interpolate with a fixed number to verify that its a number.
r.RawCount.interpolate(func(root ast.Node) (interface{}, error) {
// Execute the node but transform the AST so that it returns
// a fixed value of "5" for all interpolations.
result, err := hil.Eval(
hil.FixedValueTransform(
root, &ast.LiteralNode{Value: "5", Typex: ast.TypeString}),
nil)
if err != nil {
return "", err
}
return result.Value, nil
})
_, err := strconv.ParseInt(r.RawCount.Value().(string), 0, 0)
if err != nil {
errs = append(errs, fmt.Errorf(
"%s: resource count must be an integer",
n))
}
r.RawCount.init()
// Verify depends on points to resources that all exist
for _, d := range r.DependsOn {
// Check if we contain interpolations
rc, err := NewRawConfig(map[string]interface{}{
"value": d,
})
if err == nil && len(rc.Variables) > 0 {
errs = append(errs, fmt.Errorf(
"%s: depends on value cannot contain interpolations: %s",
n, d))
continue
}
if _, ok := resources[d]; !ok {
errs = append(errs, fmt.Errorf(
"%s: resource depends on non-existent resource '%s'",
n, d))
}
}
// Verify provider points to a provider that is configured
if r.Provider != "" {
if _, ok := providerSet[r.Provider]; !ok {
errs = append(errs, fmt.Errorf(
"%s: resource depends on non-configured provider '%s'",
n, r.Provider))
}
}
// Verify provisioners don't contain any splats
for _, p := range r.Provisioners {
// This validation checks that there are now splat variables
// referencing ourself. This currently is not allowed.
for _, v := range p.ConnInfo.Variables {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
if rv.Multi && rv.Index == -1 && rv.Type == r.Type && rv.Name == r.Name {
errs = append(errs, fmt.Errorf(
"%s: connection info cannot contain splat variable "+
"referencing itself", n))
break
}
}
for _, v := range p.RawConfig.Variables {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
if rv.Multi && rv.Index == -1 && rv.Type == r.Type && rv.Name == r.Name {
errs = append(errs, fmt.Errorf(
"%s: connection info cannot contain splat variable "+
"referencing itself", n))
break
}
}
}
}
for source, vs := range vars {
for _, v := range vs {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
id := rv.ResourceId()
if _, ok := resources[id]; !ok {
errs = append(errs, fmt.Errorf(
"%s: unknown resource '%s' referenced in variable %s",
source,
id,
rv.FullKey()))
continue
}
}
}
// Check that all outputs are valid
for _, o := range c.Outputs {
var invalidKeys []string
valueKeyFound := false
for k := range o.RawConfig.Raw {
if k == "value" {
valueKeyFound = true
continue
}
if k == "sensitive" {
if sensitive, ok := o.RawConfig.config[k].(bool); ok {
if sensitive {
o.Sensitive = true
}
continue
}
errs = append(errs, fmt.Errorf(
"%s: value for 'sensitive' must be boolean",
o.Name))
continue
}
invalidKeys = append(invalidKeys, k)
}
if len(invalidKeys) > 0 {
errs = append(errs, fmt.Errorf(
"%s: output has invalid keys: %s",
o.Name, strings.Join(invalidKeys, ", ")))
}
if !valueKeyFound {
errs = append(errs, fmt.Errorf(
"%s: output is missing required 'value' key", o.Name))
}
for _, v := range o.RawConfig.Variables {
if _, ok := v.(*CountVariable); ok {
errs = append(errs, fmt.Errorf(
"%s: count variables are only valid within resources", o.Name))
}
}
}
// Check that all variables are in the proper context
for source, rc := range c.rawConfigs() {
walker := &interpolationWalker{
ContextF: c.validateVarContextFn(source, &errs),
}
if err := reflectwalk.Walk(rc.Raw, walker); err != nil {
errs = append(errs, fmt.Errorf(
"%s: error reading config: %s", source, err))
}
}
// Validate the self variable
for source, rc := range c.rawConfigs() {
// Ignore provisioners. This is a pretty brittle way to do this,
// but better than also repeating all the resources.
if strings.Contains(source, "provision") {
continue
}
for _, v := range rc.Variables {
if _, ok := v.(*SelfVariable); ok {
errs = append(errs, fmt.Errorf(
"%s: cannot contain self-reference %s", source, v.FullKey()))
}
}
}
if len(errs) > 0 {
return &multierror.Error{Errors: errs}
}
return nil
}
// InterpolatedVariables is a helper that returns a mapping of all the interpolated
// variables within the configuration. This is used to verify references
// are valid in the Validate step.
func (c *Config) InterpolatedVariables() map[string][]InterpolatedVariable {
result := make(map[string][]InterpolatedVariable)
for source, rc := range c.rawConfigs() {
for _, v := range rc.Variables {
result[source] = append(result[source], v)
}
}
return result
}
// rawConfigs returns all of the RawConfigs that are available keyed by
// a human-friendly source.
func (c *Config) rawConfigs() map[string]*RawConfig {
result := make(map[string]*RawConfig)
for _, m := range c.Modules {
source := fmt.Sprintf("module '%s'", m.Name)
result[source] = m.RawConfig
}
for _, pc := range c.ProviderConfigs {
source := fmt.Sprintf("provider config '%s'", pc.Name)
result[source] = pc.RawConfig
}
for _, rc := range c.Resources {
source := fmt.Sprintf("resource '%s'", rc.Id())
result[source+" count"] = rc.RawCount
result[source+" config"] = rc.RawConfig
for i, p := range rc.Provisioners {
subsource := fmt.Sprintf(
"%s provisioner %s (#%d)",
source, p.Type, i+1)
result[subsource] = p.RawConfig
}
}
for _, o := range c.Outputs {
source := fmt.Sprintf("output '%s'", o.Name)
result[source] = o.RawConfig
}
return result
}
func (c *Config) validateVarContextFn(
source string, errs *[]error) interpolationWalkerContextFunc {
return func(loc reflectwalk.Location, node ast.Node) {
// If we're in a slice element, then its fine, since you can do
// anything in there.
if loc == reflectwalk.SliceElem {
return
}
// Otherwise, let's check if there is a splat resource variable
// at the top level in here. We do this by doing a transform that
// replaces everything with a noop node unless its a variable
// access or concat. This should turn the AST into a flat tree
// of Concat(Noop, ...). If there are any variables left that are
// multi-access, then its still broken.
node = node.Accept(func(n ast.Node) ast.Node {
// If it is a concat or variable access, we allow it.
switch n.(type) {
case *ast.Output:
return n
case *ast.VariableAccess:
return n
}
// Otherwise, noop
return &noopNode{}
})
vars, err := DetectVariables(node)
if err != nil {
// Ignore it since this will be caught during parse. This
// actually probably should never happen by the time this
// is called, but its okay.
return
}
for _, v := range vars {
rv, ok := v.(*ResourceVariable)
if !ok {
return
}
if rv.Multi && rv.Index == -1 {
*errs = append(*errs, fmt.Errorf(
"%s: use of the splat ('*') operator must be wrapped in a list declaration",
source))
}
}
}
}
func (m *Module) mergerName() string {
return m.Id()
}
func (m *Module) mergerMerge(other merger) merger {
m2 := other.(*Module)
result := *m
result.Name = m2.Name
result.RawConfig = result.RawConfig.merge(m2.RawConfig)
if m2.Source != "" {
result.Source = m2.Source
}
return &result
}
func (o *Output) mergerName() string {
return o.Name
}
func (o *Output) mergerMerge(m merger) merger {
o2 := m.(*Output)
result := *o
result.Name = o2.Name
result.RawConfig = result.RawConfig.merge(o2.RawConfig)
return &result
}
func (c *ProviderConfig) GoString() string {
return fmt.Sprintf("*%#v", *c)
}
func (c *ProviderConfig) FullName() string {
if c.Alias == "" {
return c.Name
}
return fmt.Sprintf("%s.%s", c.Name, c.Alias)
}
func (c *ProviderConfig) mergerName() string {
return c.Name
}
func (c *ProviderConfig) mergerMerge(m merger) merger {
c2 := m.(*ProviderConfig)
result := *c
result.Name = c2.Name
result.RawConfig = result.RawConfig.merge(c2.RawConfig)
return &result
}
func (r *Resource) mergerName() string {
return r.Id()
}
func (r *Resource) mergerMerge(m merger) merger {
r2 := m.(*Resource)
result := *r
result.Mode = r2.Mode
result.Name = r2.Name
result.Type = r2.Type
result.RawConfig = result.RawConfig.merge(r2.RawConfig)
if r2.RawCount.Value() != "1" {
result.RawCount = r2.RawCount
}
if len(r2.Provisioners) > 0 {
result.Provisioners = r2.Provisioners
}
return &result
}
// Merge merges two variables to create a new third variable.
func (v *Variable) Merge(v2 *Variable) *Variable {
// Shallow copy the variable
result := *v
// The names should be the same, but the second name always wins.
result.Name = v2.Name
if v2.Default != nil {
result.Default = v2.Default
}
if v2.Description != "" {
result.Description = v2.Description
}
return &result
}
var typeStringMap = map[string]VariableType{
"string": VariableTypeString,
"map": VariableTypeMap,
"list": VariableTypeList,
}
// Type returns the type of variable this is.
func (v *Variable) Type() VariableType {
if v.DeclaredType != "" {
declaredType, ok := typeStringMap[v.DeclaredType]
if !ok {
return VariableTypeUnknown
}
return declaredType
}
return v.inferTypeFromDefault()
}
// ValidateTypeAndDefault ensures that default variable value is compatible
// with the declared type (if one exists), and that the type is one which is
// known to Terraform
func (v *Variable) ValidateTypeAndDefault() error {
// If an explicit type is declared, ensure it is valid
if v.DeclaredType != "" {
if _, ok := typeStringMap[v.DeclaredType]; !ok {
return fmt.Errorf("Variable '%s' must be of type string or map - '%s' is not a valid type", v.Name, v.DeclaredType)
}
}
if v.DeclaredType == "" || v.Default == nil {
return nil
}
if v.inferTypeFromDefault() != v.Type() {
return fmt.Errorf("'%s' has a default value which is not of type '%s'", v.Name, v.DeclaredType)
}
return nil
}
func (v *Variable) mergerName() string {
return v.Name
}
func (v *Variable) mergerMerge(m merger) merger {
return v.Merge(m.(*Variable))
}
// Required tests whether a variable is required or not.
func (v *Variable) Required() bool {
return v.Default == nil
}
// inferTypeFromDefault contains the logic for the old method of inferring
// variable types - we can also use this for validating that the declared
// type matches the type of the default value
func (v *Variable) inferTypeFromDefault() VariableType {
if v.Default == nil {
return VariableTypeString
}
var s string
if err := mapstructure.WeakDecode(v.Default, &s); err == nil {
v.Default = s
return VariableTypeString
}
var m map[string]string
if err := mapstructure.WeakDecode(v.Default, &m); err == nil {
v.Default = m
return VariableTypeMap
}
var l []string
if err := mapstructure.WeakDecode(v.Default, &l); err == nil {
v.Default = l
return VariableTypeList
}
return VariableTypeUnknown
}
func (m ResourceMode) Taintable() bool {
switch m {
case ManagedResourceMode:
return true
case DataResourceMode:
return false
default:
panic(fmt.Errorf("unsupported ResourceMode value %s", m))
}
}