opentofu/config/config.go
James Bardin 29e5a355b9 add "version" and "provider" to module config
Add the Version and Providers fields to the module config.

Add ProviderConfig.Scope, which will be used to record the original
path of a ProviderConfig for interpolation.
2017-10-27 09:08:15 -04:00

1097 lines
27 KiB
Go

// The config package is responsible for loading and validating the
// configuration.
package config
import (
"fmt"
"regexp"
"strconv"
"strings"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/hil/ast"
"github.com/hashicorp/terraform/helper/hilmapstructure"
"github.com/hashicorp/terraform/plugin/discovery"
"github.com/mitchellh/reflectwalk"
)
// NameRegexp is the regular expression that all names (modules, providers,
// resources, etc.) must follow.
var NameRegexp = regexp.MustCompile(`(?i)\A[A-Z0-9_][A-Z0-9\-\_]*\z`)
// Config is the configuration that comes from loading a collection
// of Terraform templates.
type Config struct {
// Dir is the path to the directory where this configuration was
// loaded from. If it is blank, this configuration wasn't loaded from
// any meaningful directory.
Dir string
Terraform *Terraform
Atlas *AtlasConfig
Modules []*Module
ProviderConfigs []*ProviderConfig
Resources []*Resource
Variables []*Variable
Locals []*Local
Outputs []*Output
// The fields below can be filled in by loaders for validation
// purposes.
unknownKeys []string
}
// AtlasConfig is the configuration for building in HashiCorp's Atlas.
type AtlasConfig struct {
Name string
Include []string
Exclude []string
}
// Module is a module used within a configuration.
//
// This does not represent a module itself, this represents a module
// call-site within an existing configuration.
type Module struct {
Name string
Source string
Version string
Providers map[string]string
RawConfig *RawConfig
}
// ProviderConfig is the configuration for a resource provider.
//
// For example, Terraform needs to set the AWS access keys for the AWS
// resource provider.
type ProviderConfig struct {
Name string
Alias string
Version string
RawConfig *RawConfig
// Scope records where the Provider was declared in a module tree, so that
// it can be copied into child module providers yes still interpolated in
// the correct scope.
Scope []string
}
// A resource represents a single Terraform resource in the configuration.
// A Terraform resource is something that supports some or all of the
// usual "create, read, update, delete" operations, depending on
// the given Mode.
type Resource struct {
Mode ResourceMode // which operations the resource supports
Name string
Type string
RawCount *RawConfig
RawConfig *RawConfig
Provisioners []*Provisioner
Provider string
DependsOn []string
Lifecycle ResourceLifecycle
}
// Copy returns a copy of this Resource. Helpful for avoiding shared
// config pointers across multiple pieces of the graph that need to do
// interpolation.
func (r *Resource) Copy() *Resource {
n := &Resource{
Mode: r.Mode,
Name: r.Name,
Type: r.Type,
RawCount: r.RawCount.Copy(),
RawConfig: r.RawConfig.Copy(),
Provisioners: make([]*Provisioner, 0, len(r.Provisioners)),
Provider: r.Provider,
DependsOn: make([]string, len(r.DependsOn)),
Lifecycle: *r.Lifecycle.Copy(),
}
for _, p := range r.Provisioners {
n.Provisioners = append(n.Provisioners, p.Copy())
}
copy(n.DependsOn, r.DependsOn)
return n
}
// ResourceLifecycle is used to store the lifecycle tuning parameters
// to allow customized behavior
type ResourceLifecycle struct {
CreateBeforeDestroy bool `mapstructure:"create_before_destroy"`
PreventDestroy bool `mapstructure:"prevent_destroy"`
IgnoreChanges []string `mapstructure:"ignore_changes"`
}
// Copy returns a copy of this ResourceLifecycle
func (r *ResourceLifecycle) Copy() *ResourceLifecycle {
n := &ResourceLifecycle{
CreateBeforeDestroy: r.CreateBeforeDestroy,
PreventDestroy: r.PreventDestroy,
IgnoreChanges: make([]string, len(r.IgnoreChanges)),
}
copy(n.IgnoreChanges, r.IgnoreChanges)
return n
}
// Provisioner is a configured provisioner step on a resource.
type Provisioner struct {
Type string
RawConfig *RawConfig
ConnInfo *RawConfig
When ProvisionerWhen
OnFailure ProvisionerOnFailure
}
// Copy returns a copy of this Provisioner
func (p *Provisioner) Copy() *Provisioner {
return &Provisioner{
Type: p.Type,
RawConfig: p.RawConfig.Copy(),
ConnInfo: p.ConnInfo.Copy(),
When: p.When,
OnFailure: p.OnFailure,
}
}
// Variable is a module argument defined within the configuration.
type Variable struct {
Name string
DeclaredType string `mapstructure:"type"`
Default interface{}
Description string
}
// Local is a local value defined within the configuration.
type Local struct {
Name string
RawConfig *RawConfig
}
// Output is an output defined within the configuration. An output is
// resulting data that is highlighted by Terraform when finished. An
// output marked Sensitive will be output in a masked form following
// application, but will still be available in state.
type Output struct {
Name string
DependsOn []string
Description string
Sensitive bool
RawConfig *RawConfig
}
// VariableType is the type of value a variable is holding, and returned
// by the Type() function on variables.
type VariableType byte
const (
VariableTypeUnknown VariableType = iota
VariableTypeString
VariableTypeList
VariableTypeMap
)
func (v VariableType) Printable() string {
switch v {
case VariableTypeString:
return "string"
case VariableTypeMap:
return "map"
case VariableTypeList:
return "list"
default:
return "unknown"
}
}
// ProviderConfigName returns the name of the provider configuration in
// the given mapping that maps to the proper provider configuration
// for this resource.
func ProviderConfigName(t string, pcs []*ProviderConfig) string {
lk := ""
for _, v := range pcs {
k := v.Name
if strings.HasPrefix(t, k) && len(k) > len(lk) {
lk = k
}
}
return lk
}
// A unique identifier for this module.
func (r *Module) Id() string {
return fmt.Sprintf("%s", r.Name)
}
// Count returns the count of this resource.
func (r *Resource) Count() (int, error) {
raw := r.RawCount.Value()
count, ok := r.RawCount.Value().(string)
if !ok {
return 0, fmt.Errorf(
"expected count to be a string or int, got %T", raw)
}
v, err := strconv.ParseInt(count, 0, 0)
if err != nil {
return 0, err
}
return int(v), nil
}
// A unique identifier for this resource.
func (r *Resource) Id() string {
switch r.Mode {
case ManagedResourceMode:
return fmt.Sprintf("%s.%s", r.Type, r.Name)
case DataResourceMode:
return fmt.Sprintf("data.%s.%s", r.Type, r.Name)
default:
panic(fmt.Errorf("unknown resource mode %s", r.Mode))
}
}
// ProviderFullName returns the full name of the provider for this resource,
// which may either be specified explicitly using the "provider" meta-argument
// or implied by the prefix on the resource type name.
func (r *Resource) ProviderFullName() string {
return ResourceProviderFullName(r.Type, r.Provider)
}
// ResourceProviderFullName returns the full (dependable) name of the
// provider for a hypothetical resource with the given resource type and
// explicit provider string. If the explicit provider string is empty then
// the provider name is inferred from the resource type name.
func ResourceProviderFullName(resourceType, explicitProvider string) string {
if explicitProvider != "" {
return explicitProvider
}
idx := strings.IndexRune(resourceType, '_')
if idx == -1 {
// If no underscores, the resource name is assumed to be
// also the provider name, e.g. if the provider exposes
// only a single resource of each type.
return resourceType
}
return resourceType[:idx]
}
// Validate does some basic semantic checking of the configuration.
func (c *Config) Validate() error {
if c == nil {
return nil
}
var errs []error
for _, k := range c.unknownKeys {
errs = append(errs, fmt.Errorf(
"Unknown root level key: %s", k))
}
// Validate the Terraform config
if tf := c.Terraform; tf != nil {
errs = append(errs, c.Terraform.Validate()...)
}
vars := c.InterpolatedVariables()
varMap := make(map[string]*Variable)
for _, v := range c.Variables {
if _, ok := varMap[v.Name]; ok {
errs = append(errs, fmt.Errorf(
"Variable '%s': duplicate found. Variable names must be unique.",
v.Name))
}
varMap[v.Name] = v
}
for k, _ := range varMap {
if !NameRegexp.MatchString(k) {
errs = append(errs, fmt.Errorf(
"variable %q: variable name must match regular expresion %s",
k, NameRegexp))
}
}
for _, v := range c.Variables {
if v.Type() == VariableTypeUnknown {
errs = append(errs, fmt.Errorf(
"Variable '%s': must be a string or a map",
v.Name))
continue
}
interp := false
fn := func(n ast.Node) (interface{}, error) {
// LiteralNode is a literal string (outside of a ${ ... } sequence).
// interpolationWalker skips most of these. but in particular it
// visits those that have escaped sequences (like $${foo}) as a
// signal that *some* processing is required on this string. For
// our purposes here though, this is fine and not an interpolation.
if _, ok := n.(*ast.LiteralNode); !ok {
interp = true
}
return "", nil
}
w := &interpolationWalker{F: fn}
if v.Default != nil {
if err := reflectwalk.Walk(v.Default, w); err == nil {
if interp {
errs = append(errs, fmt.Errorf(
"Variable '%s': cannot contain interpolations",
v.Name))
}
}
}
}
// Check for references to user variables that do not actually
// exist and record those errors.
for source, vs := range vars {
for _, v := range vs {
uv, ok := v.(*UserVariable)
if !ok {
continue
}
if _, ok := varMap[uv.Name]; !ok {
errs = append(errs, fmt.Errorf(
"%s: unknown variable referenced: '%s'. define it with 'variable' blocks",
source,
uv.Name))
}
}
}
// Check that all count variables are valid.
for source, vs := range vars {
for _, rawV := range vs {
switch v := rawV.(type) {
case *CountVariable:
if v.Type == CountValueInvalid {
errs = append(errs, fmt.Errorf(
"%s: invalid count variable: %s",
source,
v.FullKey()))
}
case *PathVariable:
if v.Type == PathValueInvalid {
errs = append(errs, fmt.Errorf(
"%s: invalid path variable: %s",
source,
v.FullKey()))
}
}
}
}
// Check that providers aren't declared multiple times and that their
// version constraints, where present, are syntactically valid.
providerSet := make(map[string]struct{})
for _, p := range c.ProviderConfigs {
name := p.FullName()
if _, ok := providerSet[name]; ok {
errs = append(errs, fmt.Errorf(
"provider.%s: declared multiple times, you can only declare a provider once",
name))
continue
}
if p.Version != "" {
_, err := discovery.ConstraintStr(p.Version).Parse()
if err != nil {
errs = append(errs, fmt.Errorf(
"provider.%s: invalid version constraint %q: %s",
name, p.Version, err,
))
}
}
providerSet[name] = struct{}{}
}
// Check that all references to modules are valid
modules := make(map[string]*Module)
dupped := make(map[string]struct{})
for _, m := range c.Modules {
// Check for duplicates
if _, ok := modules[m.Id()]; ok {
if _, ok := dupped[m.Id()]; !ok {
dupped[m.Id()] = struct{}{}
errs = append(errs, fmt.Errorf(
"%s: module repeated multiple times",
m.Id()))
}
// Already seen this module, just skip it
continue
}
modules[m.Id()] = m
// Check that the source has no interpolations
rc, err := NewRawConfig(map[string]interface{}{
"root": m.Source,
})
if err != nil {
errs = append(errs, fmt.Errorf(
"%s: module source error: %s",
m.Id(), err))
} else if len(rc.Interpolations) > 0 {
errs = append(errs, fmt.Errorf(
"%s: module source cannot contain interpolations",
m.Id()))
}
// Check that the name matches our regexp
if !NameRegexp.Match([]byte(m.Name)) {
errs = append(errs, fmt.Errorf(
"%s: module name can only contain letters, numbers, "+
"dashes, and underscores",
m.Id()))
}
// Check that the configuration can all be strings, lists or maps
raw := make(map[string]interface{})
for k, v := range m.RawConfig.Raw {
var strVal string
if err := hilmapstructure.WeakDecode(v, &strVal); err == nil {
raw[k] = strVal
continue
}
var mapVal map[string]interface{}
if err := hilmapstructure.WeakDecode(v, &mapVal); err == nil {
raw[k] = mapVal
continue
}
var sliceVal []interface{}
if err := hilmapstructure.WeakDecode(v, &sliceVal); err == nil {
raw[k] = sliceVal
continue
}
errs = append(errs, fmt.Errorf(
"%s: variable %s must be a string, list or map value",
m.Id(), k))
}
// Check for invalid count variables
for _, v := range m.RawConfig.Variables {
switch v.(type) {
case *CountVariable:
errs = append(errs, fmt.Errorf(
"%s: count variables are only valid within resources", m.Name))
case *SelfVariable:
errs = append(errs, fmt.Errorf(
"%s: self variables are only valid within resources", m.Name))
}
}
// Update the raw configuration to only contain the string values
m.RawConfig, err = NewRawConfig(raw)
if err != nil {
errs = append(errs, fmt.Errorf(
"%s: can't initialize configuration: %s",
m.Id(), err))
}
}
dupped = nil
// Check that all variables for modules reference modules that
// exist.
for source, vs := range vars {
for _, v := range vs {
mv, ok := v.(*ModuleVariable)
if !ok {
continue
}
if _, ok := modules[mv.Name]; !ok {
errs = append(errs, fmt.Errorf(
"%s: unknown module referenced: %s",
source,
mv.Name))
}
}
}
// Check that all references to resources are valid
resources := make(map[string]*Resource)
dupped = make(map[string]struct{})
for _, r := range c.Resources {
if _, ok := resources[r.Id()]; ok {
if _, ok := dupped[r.Id()]; !ok {
dupped[r.Id()] = struct{}{}
errs = append(errs, fmt.Errorf(
"%s: resource repeated multiple times",
r.Id()))
}
}
resources[r.Id()] = r
}
dupped = nil
// Validate resources
for n, r := range resources {
// Verify count variables
for _, v := range r.RawCount.Variables {
switch v.(type) {
case *CountVariable:
errs = append(errs, fmt.Errorf(
"%s: resource count can't reference count variable: %s",
n,
v.FullKey()))
case *SimpleVariable:
errs = append(errs, fmt.Errorf(
"%s: resource count can't reference variable: %s",
n,
v.FullKey()))
// Good
case *ModuleVariable:
case *ResourceVariable:
case *TerraformVariable:
case *UserVariable:
case *LocalVariable:
default:
errs = append(errs, fmt.Errorf(
"Internal error. Unknown type in count var in %s: %T",
n, v))
}
}
if !r.RawCount.couldBeInteger() {
errs = append(errs, fmt.Errorf(
"%s: resource count must be an integer",
n))
}
r.RawCount.init()
// Validate DependsOn
errs = append(errs, c.validateDependsOn(n, r.DependsOn, resources, modules)...)
// Verify provisioners
for _, p := range r.Provisioners {
// This validation checks that there are no splat variables
// referencing ourself. This currently is not allowed.
for _, v := range p.ConnInfo.Variables {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
if rv.Multi && rv.Index == -1 && rv.Type == r.Type && rv.Name == r.Name {
errs = append(errs, fmt.Errorf(
"%s: connection info cannot contain splat variable "+
"referencing itself", n))
break
}
}
for _, v := range p.RawConfig.Variables {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
if rv.Multi && rv.Index == -1 && rv.Type == r.Type && rv.Name == r.Name {
errs = append(errs, fmt.Errorf(
"%s: connection info cannot contain splat variable "+
"referencing itself", n))
break
}
}
// Check for invalid when/onFailure values, though this should be
// picked up by the loader we check here just in case.
if p.When == ProvisionerWhenInvalid {
errs = append(errs, fmt.Errorf(
"%s: provisioner 'when' value is invalid", n))
}
if p.OnFailure == ProvisionerOnFailureInvalid {
errs = append(errs, fmt.Errorf(
"%s: provisioner 'on_failure' value is invalid", n))
}
}
// Verify ignore_changes contains valid entries
for _, v := range r.Lifecycle.IgnoreChanges {
if strings.Contains(v, "*") && v != "*" {
errs = append(errs, fmt.Errorf(
"%s: ignore_changes does not support using a partial string "+
"together with a wildcard: %s", n, v))
}
}
// Verify ignore_changes has no interpolations
rc, err := NewRawConfig(map[string]interface{}{
"root": r.Lifecycle.IgnoreChanges,
})
if err != nil {
errs = append(errs, fmt.Errorf(
"%s: lifecycle ignore_changes error: %s",
n, err))
} else if len(rc.Interpolations) > 0 {
errs = append(errs, fmt.Errorf(
"%s: lifecycle ignore_changes cannot contain interpolations",
n))
}
// If it is a data source then it can't have provisioners
if r.Mode == DataResourceMode {
if _, ok := r.RawConfig.Raw["provisioner"]; ok {
errs = append(errs, fmt.Errorf(
"%s: data sources cannot have provisioners",
n))
}
}
}
for source, vs := range vars {
for _, v := range vs {
rv, ok := v.(*ResourceVariable)
if !ok {
continue
}
id := rv.ResourceId()
if _, ok := resources[id]; !ok {
errs = append(errs, fmt.Errorf(
"%s: unknown resource '%s' referenced in variable %s",
source,
id,
rv.FullKey()))
continue
}
}
}
// Check that all locals are valid
{
found := make(map[string]struct{})
for _, l := range c.Locals {
if _, ok := found[l.Name]; ok {
errs = append(errs, fmt.Errorf(
"%s: duplicate local. local value names must be unique",
l.Name,
))
continue
}
found[l.Name] = struct{}{}
for _, v := range l.RawConfig.Variables {
if _, ok := v.(*CountVariable); ok {
errs = append(errs, fmt.Errorf(
"local %s: count variables are only valid within resources", l.Name,
))
}
}
}
}
// Check that all outputs are valid
{
found := make(map[string]struct{})
for _, o := range c.Outputs {
// Verify the output is new
if _, ok := found[o.Name]; ok {
errs = append(errs, fmt.Errorf(
"%s: duplicate output. output names must be unique.",
o.Name))
continue
}
found[o.Name] = struct{}{}
var invalidKeys []string
valueKeyFound := false
for k := range o.RawConfig.Raw {
if k == "value" {
valueKeyFound = true
continue
}
if k == "sensitive" {
if sensitive, ok := o.RawConfig.config[k].(bool); ok {
if sensitive {
o.Sensitive = true
}
continue
}
errs = append(errs, fmt.Errorf(
"%s: value for 'sensitive' must be boolean",
o.Name))
continue
}
if k == "description" {
if desc, ok := o.RawConfig.config[k].(string); ok {
o.Description = desc
continue
}
errs = append(errs, fmt.Errorf(
"%s: value for 'description' must be string",
o.Name))
continue
}
invalidKeys = append(invalidKeys, k)
}
if len(invalidKeys) > 0 {
errs = append(errs, fmt.Errorf(
"%s: output has invalid keys: %s",
o.Name, strings.Join(invalidKeys, ", ")))
}
if !valueKeyFound {
errs = append(errs, fmt.Errorf(
"%s: output is missing required 'value' key", o.Name))
}
for _, v := range o.RawConfig.Variables {
if _, ok := v.(*CountVariable); ok {
errs = append(errs, fmt.Errorf(
"%s: count variables are only valid within resources", o.Name))
}
}
}
}
// Validate the self variable
for source, rc := range c.rawConfigs() {
// Ignore provisioners. This is a pretty brittle way to do this,
// but better than also repeating all the resources.
if strings.Contains(source, "provision") {
continue
}
for _, v := range rc.Variables {
if _, ok := v.(*SelfVariable); ok {
errs = append(errs, fmt.Errorf(
"%s: cannot contain self-reference %s", source, v.FullKey()))
}
}
}
if len(errs) > 0 {
return &multierror.Error{Errors: errs}
}
return nil
}
// InterpolatedVariables is a helper that returns a mapping of all the interpolated
// variables within the configuration. This is used to verify references
// are valid in the Validate step.
func (c *Config) InterpolatedVariables() map[string][]InterpolatedVariable {
result := make(map[string][]InterpolatedVariable)
for source, rc := range c.rawConfigs() {
for _, v := range rc.Variables {
result[source] = append(result[source], v)
}
}
return result
}
// rawConfigs returns all of the RawConfigs that are available keyed by
// a human-friendly source.
func (c *Config) rawConfigs() map[string]*RawConfig {
result := make(map[string]*RawConfig)
for _, m := range c.Modules {
source := fmt.Sprintf("module '%s'", m.Name)
result[source] = m.RawConfig
}
for _, pc := range c.ProviderConfigs {
source := fmt.Sprintf("provider config '%s'", pc.Name)
result[source] = pc.RawConfig
}
for _, rc := range c.Resources {
source := fmt.Sprintf("resource '%s'", rc.Id())
result[source+" count"] = rc.RawCount
result[source+" config"] = rc.RawConfig
for i, p := range rc.Provisioners {
subsource := fmt.Sprintf(
"%s provisioner %s (#%d)",
source, p.Type, i+1)
result[subsource] = p.RawConfig
}
}
for _, o := range c.Outputs {
source := fmt.Sprintf("output '%s'", o.Name)
result[source] = o.RawConfig
}
return result
}
func (c *Config) validateDependsOn(
n string,
v []string,
resources map[string]*Resource,
modules map[string]*Module) []error {
// Verify depends on points to resources that all exist
var errs []error
for _, d := range v {
// Check if we contain interpolations
rc, err := NewRawConfig(map[string]interface{}{
"value": d,
})
if err == nil && len(rc.Variables) > 0 {
errs = append(errs, fmt.Errorf(
"%s: depends on value cannot contain interpolations: %s",
n, d))
continue
}
// If it is a module, verify it is a module
if strings.HasPrefix(d, "module.") {
name := d[len("module."):]
if _, ok := modules[name]; !ok {
errs = append(errs, fmt.Errorf(
"%s: resource depends on non-existent module '%s'",
n, name))
}
continue
}
// Check resources
if _, ok := resources[d]; !ok {
errs = append(errs, fmt.Errorf(
"%s: resource depends on non-existent resource '%s'",
n, d))
}
}
return errs
}
func (m *Module) mergerName() string {
return m.Id()
}
func (m *Module) mergerMerge(other merger) merger {
m2 := other.(*Module)
result := *m
result.Name = m2.Name
result.RawConfig = result.RawConfig.merge(m2.RawConfig)
if m2.Source != "" {
result.Source = m2.Source
}
return &result
}
func (o *Output) mergerName() string {
return o.Name
}
func (o *Output) mergerMerge(m merger) merger {
o2 := m.(*Output)
result := *o
result.Name = o2.Name
result.Description = o2.Description
result.RawConfig = result.RawConfig.merge(o2.RawConfig)
result.Sensitive = o2.Sensitive
result.DependsOn = o2.DependsOn
return &result
}
func (c *ProviderConfig) GoString() string {
return fmt.Sprintf("*%#v", *c)
}
func (c *ProviderConfig) FullName() string {
if c.Alias == "" {
return c.Name
}
return fmt.Sprintf("%s.%s", c.Name, c.Alias)
}
func (c *ProviderConfig) mergerName() string {
return c.Name
}
func (c *ProviderConfig) mergerMerge(m merger) merger {
c2 := m.(*ProviderConfig)
result := *c
result.Name = c2.Name
result.RawConfig = result.RawConfig.merge(c2.RawConfig)
if c2.Alias != "" {
result.Alias = c2.Alias
}
return &result
}
func (r *Resource) mergerName() string {
return r.Id()
}
func (r *Resource) mergerMerge(m merger) merger {
r2 := m.(*Resource)
result := *r
result.Mode = r2.Mode
result.Name = r2.Name
result.Type = r2.Type
result.RawConfig = result.RawConfig.merge(r2.RawConfig)
if r2.RawCount.Value() != "1" {
result.RawCount = r2.RawCount
}
if len(r2.Provisioners) > 0 {
result.Provisioners = r2.Provisioners
}
return &result
}
// Merge merges two variables to create a new third variable.
func (v *Variable) Merge(v2 *Variable) *Variable {
// Shallow copy the variable
result := *v
// The names should be the same, but the second name always wins.
result.Name = v2.Name
if v2.DeclaredType != "" {
result.DeclaredType = v2.DeclaredType
}
if v2.Default != nil {
result.Default = v2.Default
}
if v2.Description != "" {
result.Description = v2.Description
}
return &result
}
var typeStringMap = map[string]VariableType{
"string": VariableTypeString,
"map": VariableTypeMap,
"list": VariableTypeList,
}
// Type returns the type of variable this is.
func (v *Variable) Type() VariableType {
if v.DeclaredType != "" {
declaredType, ok := typeStringMap[v.DeclaredType]
if !ok {
return VariableTypeUnknown
}
return declaredType
}
return v.inferTypeFromDefault()
}
// ValidateTypeAndDefault ensures that default variable value is compatible
// with the declared type (if one exists), and that the type is one which is
// known to Terraform
func (v *Variable) ValidateTypeAndDefault() error {
// If an explicit type is declared, ensure it is valid
if v.DeclaredType != "" {
if _, ok := typeStringMap[v.DeclaredType]; !ok {
validTypes := []string{}
for k := range typeStringMap {
validTypes = append(validTypes, k)
}
return fmt.Errorf(
"Variable '%s' type must be one of [%s] - '%s' is not a valid type",
v.Name,
strings.Join(validTypes, ", "),
v.DeclaredType,
)
}
}
if v.DeclaredType == "" || v.Default == nil {
return nil
}
if v.inferTypeFromDefault() != v.Type() {
return fmt.Errorf("'%s' has a default value which is not of type '%s' (got '%s')",
v.Name, v.DeclaredType, v.inferTypeFromDefault().Printable())
}
return nil
}
func (v *Variable) mergerName() string {
return v.Name
}
func (v *Variable) mergerMerge(m merger) merger {
return v.Merge(m.(*Variable))
}
// Required tests whether a variable is required or not.
func (v *Variable) Required() bool {
return v.Default == nil
}
// inferTypeFromDefault contains the logic for the old method of inferring
// variable types - we can also use this for validating that the declared
// type matches the type of the default value
func (v *Variable) inferTypeFromDefault() VariableType {
if v.Default == nil {
return VariableTypeString
}
var s string
if err := hilmapstructure.WeakDecode(v.Default, &s); err == nil {
v.Default = s
return VariableTypeString
}
var m map[string]interface{}
if err := hilmapstructure.WeakDecode(v.Default, &m); err == nil {
v.Default = m
return VariableTypeMap
}
var l []interface{}
if err := hilmapstructure.WeakDecode(v.Default, &l); err == nil {
v.Default = l
return VariableTypeList
}
return VariableTypeUnknown
}
func (m ResourceMode) Taintable() bool {
switch m {
case ManagedResourceMode:
return true
case DataResourceMode:
return false
default:
panic(fmt.Errorf("unsupported ResourceMode value %s", m))
}
}