opentofu/config/module/tree.go
James Bardin 3a495ffe56 rename ModuleStorage to Storage
get rid of stutter and use module.Storage
2017-10-27 13:11:21 -04:00

724 lines
19 KiB
Go

package module
import (
"bufio"
"bytes"
"fmt"
"log"
"path/filepath"
"strings"
"sync"
getter "github.com/hashicorp/go-getter"
"github.com/hashicorp/terraform/config"
)
// RootName is the name of the root tree.
const RootName = "root"
// Tree represents the module import tree of configurations.
//
// This Tree structure can be used to get (download) new modules, load
// all the modules without getting, flatten the tree into something
// Terraform can use, etc.
type Tree struct {
name string
config *config.Config
children map[string]*Tree
path []string
lock sync.RWMutex
// version is the final version of the config loaded for the Tree's module
version string
// source is the "source" string used to load this module. It's possible
// for a module source to change, but the path remains the same, preventing
// it from being reloaded.
source string
// parent allows us to walk back up the tree and determine if there are any
// versioned ancestor modules which may effect the stored location of
// submodules
parent *Tree
}
// NewTree returns a new Tree for the given config structure.
func NewTree(name string, c *config.Config) *Tree {
return &Tree{config: c, name: name}
}
// NewEmptyTree returns a new tree that is empty (contains no configuration).
func NewEmptyTree() *Tree {
t := &Tree{config: &config.Config{}}
// We do this dummy load so that the tree is marked as "loaded". It
// should never fail because this is just about a no-op. If it does fail
// we panic so we can know its a bug.
if err := t.Load(&Storage{Mode: GetModeGet}); err != nil {
panic(err)
}
return t
}
// NewTreeModule is like NewTree except it parses the configuration in
// the directory and gives it a specific name. Use a blank name "" to specify
// the root module.
func NewTreeModule(name, dir string) (*Tree, error) {
c, err := config.LoadDir(dir)
if err != nil {
return nil, err
}
return NewTree(name, c), nil
}
// Config returns the configuration for this module.
func (t *Tree) Config() *config.Config {
return t.config
}
// Child returns the child with the given path (by name).
func (t *Tree) Child(path []string) *Tree {
if t == nil {
return nil
}
if len(path) == 0 {
return t
}
c := t.Children()[path[0]]
if c == nil {
return nil
}
return c.Child(path[1:])
}
// Children returns the children of this tree (the modules that are
// imported by this root).
//
// This will only return a non-nil value after Load is called.
func (t *Tree) Children() map[string]*Tree {
t.lock.RLock()
defer t.lock.RUnlock()
return t.children
}
// DeepEach calls the provided callback for the receiver and then all of
// its descendents in the tree, allowing an operation to be performed on
// all modules in the tree.
//
// Parents will be visited before their children but otherwise the order is
// not defined.
func (t *Tree) DeepEach(cb func(*Tree)) {
t.lock.RLock()
defer t.lock.RUnlock()
t.deepEach(cb)
}
func (t *Tree) deepEach(cb func(*Tree)) {
cb(t)
for _, c := range t.children {
c.deepEach(cb)
}
}
// Loaded says whether or not this tree has been loaded or not yet.
func (t *Tree) Loaded() bool {
t.lock.RLock()
defer t.lock.RUnlock()
return t.children != nil
}
// Modules returns the list of modules that this tree imports.
//
// This is only the imports of _this_ level of the tree. To retrieve the
// full nested imports, you'll have to traverse the tree.
func (t *Tree) Modules() []*Module {
result := make([]*Module, len(t.config.Modules))
for i, m := range t.config.Modules {
result[i] = &Module{
Name: m.Name,
Version: m.Version,
Source: m.Source,
Providers: m.Providers,
}
}
return result
}
// Name returns the name of the tree. This will be "<root>" for the root
// tree and then the module name given for any children.
func (t *Tree) Name() string {
if t.name == "" {
return RootName
}
return t.name
}
// Load loads the configuration of the entire tree.
//
// The parameters are used to tell the tree where to find modules and
// whether it can download/update modules along the way.
//
// Calling this multiple times will reload the tree.
//
// Various semantic-like checks are made along the way of loading since
// module trees inherently require the configuration to be in a reasonably
// sane state: no circular dependencies, proper module sources, etc. A full
// suite of validations can be done by running Validate (after loading).
func (t *Tree) Load(s *Storage) error {
t.lock.Lock()
defer t.lock.Unlock()
children, err := t.getChildren(s)
if err != nil {
return err
}
// Go through all the children and load them.
for _, c := range children {
if err := c.Load(s); err != nil {
return err
}
}
// Set our tree up
t.children = children
// if we're the root module, we can now set the provider inheritance
if len(t.path) == 0 {
t.inheritProviderConfigs(nil)
}
return nil
}
func (t *Tree) getChildren(s *Storage) (map[string]*Tree, error) {
children := make(map[string]*Tree)
// Go through all the modules and get the directory for them.
for _, m := range t.Modules() {
if _, ok := children[m.Name]; ok {
return nil, fmt.Errorf(
"module %s: duplicated. module names must be unique", m.Name)
}
// Determine the path to this child
path := make([]string, len(t.path), len(t.path)+1)
copy(path, t.path)
path = append(path, m.Name)
log.Printf("[TRACE] module source: %q", m.Source)
// Lookup the local location of the module.
// dir is the local directory where the module is stored
mod, err := s.findRegistryModule(m.Source, m.Version)
if err != nil {
return nil, err
}
// The key is the string that will be used to uniquely id the Source in
// the local storage. The prefix digit can be incremented to
// invalidate the local module storage.
key := "1." + t.versionedPathKey(m)
if mod.Version != "" {
key += "." + mod.Version
}
// Check for the exact key if it's not a registry module
if !mod.registry {
mod.Dir, err = s.findModule(key)
if err != nil {
return nil, err
}
}
if mod.Dir != "" {
// We found it locally, but in order to load the Tree we need to
// find out if there was another subDir stored from detection.
subDir, err := s.getModuleRoot(mod.Dir)
if err != nil {
// If there's a problem with the subdir record, we'll let the
// recordSubdir method fix it up. Any other filesystem errors
// will turn up again below.
log.Println("[WARN] error reading subdir record:", err)
} else {
fullDir := filepath.Join(mod.Dir, subDir)
child, err := NewTreeModule(m.Name, fullDir)
if err != nil {
return nil, fmt.Errorf("module %s: %s", m.Name, err)
}
child.path = path
child.parent = t
child.version = mod.Version
child.source = m.Source
children[m.Name] = child
continue
}
}
// Split out the subdir if we have one.
// Terraform keeps the entire requested tree, so that modules can
// reference sibling modules from the same archive or repo.
rawSource, subDir := getter.SourceDirSubdir(m.Source)
// we haven't found a source, so fallback to the go-getter detectors
source := mod.url
if source == "" {
source, err = getter.Detect(rawSource, t.config.Dir, getter.Detectors)
if err != nil {
return nil, fmt.Errorf("module %s: %s", m.Name, err)
}
}
log.Printf("[TRACE] detected module source %q", source)
// Check if the detector introduced something new.
// For example, the registry always adds a subdir of `//*`,
// indicating that we need to strip off the first component from the
// tar archive, though we may not yet know what it is called.
source, detectedSubDir := getter.SourceDirSubdir(source)
if detectedSubDir != "" {
subDir = filepath.Join(detectedSubDir, subDir)
}
dir, ok, err := s.getStorage(key, source)
if err != nil {
return nil, err
}
if !ok {
return nil, fmt.Errorf("module %s: not found, may need to run 'terraform init'", m.Name)
}
log.Printf("[TRACE] %q stored in %q", source, dir)
// expand and record the subDir for later
fullDir := dir
if subDir != "" {
fullDir, err = getter.SubdirGlob(dir, subDir)
if err != nil {
return nil, err
}
// +1 to account for the pathsep
if len(dir)+1 > len(fullDir) {
return nil, fmt.Errorf("invalid module storage path %q", fullDir)
}
subDir = fullDir[len(dir)+1:]
}
// add new info to the module record
mod.Key = key
mod.Dir = dir
mod.Root = subDir
// record the module in our manifest
if err := s.recordModule(mod); err != nil {
return nil, err
}
child, err := NewTreeModule(m.Name, fullDir)
if err != nil {
return nil, fmt.Errorf("module %s: %s", m.Name, err)
}
child.path = path
child.parent = t
child.version = mod.Version
child.source = m.Source
children[m.Name] = child
}
return children, nil
}
// inheritProviderConfig resolves all provider config inheritance after the
// tree is loaded.
//
// If there is a provider block without a config, look in the parent's Module
// block for a provider, and fetch that provider's configuration. If that
// doesn't exist, assume a default empty config. Implicit providers can still
// inherit their config all the way up from the root, so walk up the tree and
// copy the first matching provider into the module.
func (t *Tree) inheritProviderConfigs(stack []*Tree) {
// the recursive calls only append, so we don't need to worry about copying
// this slice.
stack = append(stack, t)
for _, c := range t.children {
c.inheritProviderConfigs(stack)
}
providers := make(map[string]*config.ProviderConfig)
missingProviders := make(map[string]bool)
for _, p := range t.config.ProviderConfigs {
providers[p.FullName()] = p
}
for _, r := range t.config.Resources {
p := r.ProviderFullName()
if _, ok := providers[p]; !(ok || strings.Contains(p, ".")) {
missingProviders[p] = true
}
}
// Search for implicit provider configs
// This adds an empty config is no inherited config is found, so that
// there is always a provider config present.
// This is done in the root module as well, just to set the providers.
for missing := range missingProviders {
// first create an empty provider config
pc := &config.ProviderConfig{
Name: missing,
}
// walk up the stack looking for matching providers
for i := len(stack) - 2; i >= 0; i-- {
pt := stack[i]
var parentProvider *config.ProviderConfig
for _, p := range pt.config.ProviderConfigs {
if p.FullName() == missing {
parentProvider = p
break
}
}
if parentProvider == nil {
continue
}
pc.Path = pt.Path()
pc.Path = append([]string{RootName}, pt.path...)
pc.RawConfig = parentProvider.RawConfig
pc.Inherited = true
log.Printf("[TRACE] provider %q inheriting config from %q",
strings.Join(append(t.Path(), pc.FullName()), "."),
strings.Join(append(pt.Path(), parentProvider.FullName()), "."),
)
break
}
// always set a provider config
if pc.RawConfig == nil {
pc.RawConfig, _ = config.NewRawConfig(map[string]interface{}{})
}
t.config.ProviderConfigs = append(t.config.ProviderConfigs, pc)
}
// After allowing the empty implicit configs to be created in root, there's nothing left to inherit
if len(stack) == 1 {
return
}
// get our parent's module config block
parent := stack[len(stack)-2]
var parentModule *config.Module
for _, m := range parent.config.Modules {
if m.Name == t.name {
parentModule = m
break
}
}
if parentModule == nil {
panic("can't be a module without a parent module config")
}
// now look for providers that need a config
for p, pc := range providers {
if len(pc.RawConfig.RawMap()) > 0 {
log.Printf("[TRACE] provider %q has a config, continuing", p)
continue
}
// this provider has no config yet, check for one being passed in
parentProviderName, ok := parentModule.Providers[p]
if !ok {
continue
}
var parentProvider *config.ProviderConfig
// there's a config for us in the parent module
for _, pp := range parent.config.ProviderConfigs {
if pp.FullName() == parentProviderName {
parentProvider = pp
break
}
}
if parentProvider == nil {
// no config found, assume defaults
continue
}
// Copy it in, but set an interpolation Scope.
// An interpolation Scope always need to have "root"
pc.Path = append([]string{RootName}, parent.path...)
pc.RawConfig = parentProvider.RawConfig
log.Printf("[TRACE] provider %q inheriting config from %q",
strings.Join(append(t.Path(), pc.FullName()), "."),
strings.Join(append(parent.Path(), parentProvider.FullName()), "."),
)
}
}
// Path is the full path to this tree.
func (t *Tree) Path() []string {
return t.path
}
// String gives a nice output to describe the tree.
func (t *Tree) String() string {
var result bytes.Buffer
path := strings.Join(t.path, ", ")
if path != "" {
path = fmt.Sprintf(" (path: %s)", path)
}
result.WriteString(t.Name() + path + "\n")
cs := t.Children()
if cs == nil {
result.WriteString(" not loaded")
} else {
// Go through each child and get its string value, then indent it
// by two.
for _, c := range cs {
r := strings.NewReader(c.String())
scanner := bufio.NewScanner(r)
for scanner.Scan() {
result.WriteString(" ")
result.WriteString(scanner.Text())
result.WriteString("\n")
}
}
}
return result.String()
}
// Validate does semantic checks on the entire tree of configurations.
//
// This will call the respective config.Config.Validate() functions as well
// as verifying things such as parameters/outputs between the various modules.
//
// Load must be called prior to calling Validate or an error will be returned.
func (t *Tree) Validate() error {
if !t.Loaded() {
return fmt.Errorf("tree must be loaded before calling Validate")
}
// If something goes wrong, here is our error template
newErr := &treeError{Name: []string{t.Name()}}
// Terraform core does not handle root module children named "root".
// We plan to fix this in the future but this bug was brought up in
// the middle of a release and we don't want to introduce wide-sweeping
// changes at that time.
if len(t.path) == 1 && t.name == "root" {
return fmt.Errorf("root module cannot contain module named 'root'")
}
// Validate our configuration first.
if err := t.config.Validate(); err != nil {
newErr.Add(err)
}
// If we're the root, we do extra validation. This validation usually
// requires the entire tree (since children don't have parent pointers).
if len(t.path) == 0 {
if err := t.validateProviderAlias(); err != nil {
newErr.Add(err)
}
}
// Get the child trees
children := t.Children()
// Validate all our children
for _, c := range children {
err := c.Validate()
if err == nil {
continue
}
verr, ok := err.(*treeError)
if !ok {
// Unknown error, just return...
return err
}
// Append ourselves to the error and then return
verr.Name = append(verr.Name, t.Name())
newErr.AddChild(verr)
}
// Go over all the modules and verify that any parameters are valid
// variables into the module in question.
for _, m := range t.config.Modules {
tree, ok := children[m.Name]
if !ok {
// This should never happen because Load watches us
panic("module not found in children: " + m.Name)
}
// Build the variables that the module defines
requiredMap := make(map[string]struct{})
varMap := make(map[string]struct{})
for _, v := range tree.config.Variables {
varMap[v.Name] = struct{}{}
if v.Required() {
requiredMap[v.Name] = struct{}{}
}
}
// Compare to the keys in our raw config for the module
for k, _ := range m.RawConfig.Raw {
if _, ok := varMap[k]; !ok {
newErr.Add(fmt.Errorf(
"module %s: %s is not a valid parameter",
m.Name, k))
}
// Remove the required
delete(requiredMap, k)
}
// If we have any required left over, they aren't set.
for k, _ := range requiredMap {
newErr.Add(fmt.Errorf(
"module %s: required variable %q not set",
m.Name, k))
}
}
// Go over all the variables used and make sure that any module
// variables represent outputs properly.
for source, vs := range t.config.InterpolatedVariables() {
for _, v := range vs {
mv, ok := v.(*config.ModuleVariable)
if !ok {
continue
}
tree, ok := children[mv.Name]
if !ok {
newErr.Add(fmt.Errorf(
"%s: undefined module referenced %s",
source, mv.Name))
continue
}
found := false
for _, o := range tree.config.Outputs {
if o.Name == mv.Field {
found = true
break
}
}
if !found {
newErr.Add(fmt.Errorf(
"%s: %s is not a valid output for module %s",
source, mv.Field, mv.Name))
}
}
}
return newErr.ErrOrNil()
}
// versionedPathKey returns a path string with every levels full name, version
// and source encoded. This is to provide a unique key for our module storage,
// since submodules need to know which versions of their ancestor modules they
// are loaded from.
// For example, if module A has a subdirectory B, if module A's source or
// version is updated B's storage key must reflect this change in order for the
// correct version of B's source to be loaded.
func (t *Tree) versionedPathKey(m *Module) string {
path := make([]string, len(t.path)+1)
path[len(path)-1] = m.Name + ";" + m.Source
// We're going to load these in order for easier reading and debugging, but
// in practice they only need to be unique and consistent.
p := t
i := len(path) - 2
for ; i >= 0; i-- {
if p == nil {
break
}
// we may have been loaded under a blank Tree, so always check for a name
// too.
if p.name == "" {
break
}
seg := p.name
if p.version != "" {
seg += "#" + p.version
}
if p.source != "" {
seg += ";" + p.source
}
path[i] = seg
p = p.parent
}
key := strings.Join(path, "|")
return key
}
// treeError is an error use by Tree.Validate to accumulates all
// validation errors.
type treeError struct {
Name []string
Errs []error
Children []*treeError
}
func (e *treeError) Add(err error) {
e.Errs = append(e.Errs, err)
}
func (e *treeError) AddChild(err *treeError) {
e.Children = append(e.Children, err)
}
func (e *treeError) ErrOrNil() error {
if len(e.Errs) > 0 || len(e.Children) > 0 {
return e
}
return nil
}
func (e *treeError) Error() string {
name := strings.Join(e.Name, ".")
var out bytes.Buffer
fmt.Fprintf(&out, "module %s: ", name)
if len(e.Errs) == 1 {
// single like error
out.WriteString(e.Errs[0].Error())
} else {
// multi-line error
for _, err := range e.Errs {
fmt.Fprintf(&out, "\n %s", err)
}
}
if len(e.Children) > 0 {
// start the next error on a new line
out.WriteString("\n ")
}
for _, child := range e.Children {
out.WriteString(child.Error())
}
return out.String()
}