opentofu/terraform/node_data_refresh.go
Martin Atkins 5281afcc07 core: Actually read provider schema for data resources
We were passing the pointer into EvalReadDataDiff here, but because it was
not also passed to EvalGetProvider it was just always nil.
2018-10-16 18:48:28 -07:00

218 lines
5.8 KiB
Go

package terraform
import (
"github.com/hashicorp/terraform/dag"
"github.com/hashicorp/terraform/tfdiags"
"github.com/zclconf/go-cty/cty"
)
// NodeRefreshableDataResource represents a resource that is "refreshable".
type NodeRefreshableDataResource struct {
*NodeAbstractResource
}
var (
_ GraphNodeSubPath = (*NodeRefreshableDataResource)(nil)
_ GraphNodeDynamicExpandable = (*NodeRefreshableDataResource)(nil)
_ GraphNodeReferenceable = (*NodeRefreshableDataResource)(nil)
_ GraphNodeReferencer = (*NodeRefreshableDataResource)(nil)
_ GraphNodeResource = (*NodeRefreshableDataResource)(nil)
_ GraphNodeAttachResourceConfig = (*NodeRefreshableDataResource)(nil)
)
// GraphNodeDynamicExpandable
func (n *NodeRefreshableDataResource) DynamicExpand(ctx EvalContext) (*Graph, error) {
var diags tfdiags.Diagnostics
count, countDiags := evaluateResourceCountExpression(n.Config.Count, ctx)
diags = diags.Append(countDiags)
if countDiags.HasErrors() {
return nil, diags.Err()
}
// Next we need to potentially rename an instance address in the state
// if we're transitioning whether "count" is set at all.
fixResourceCountSetTransition(ctx, n.ResourceAddr().Resource, count != -1)
// Grab the state which we read
state, lock := ctx.State()
lock.RLock()
defer lock.RUnlock()
// The concrete resource factory we'll use
concreteResource := func(a *NodeAbstractResourceInstance) dag.Vertex {
// Add the config and state since we don't do that via transforms
a.Config = n.Config
a.ResolvedProvider = n.ResolvedProvider
return &NodeRefreshableDataResourceInstance{
NodeAbstractResourceInstance: a,
}
}
// We also need a destroyable resource for orphans that are a result of a
// scaled-in count.
concreteResourceDestroyable := func(a *NodeAbstractResourceInstance) dag.Vertex {
// Add the config since we don't do that via transforms
a.Config = n.Config
return &NodeDestroyableDataResource{
NodeAbstractResourceInstance: a,
}
}
// Start creating the steps
steps := []GraphTransformer{
// Expand the count.
&ResourceCountTransformer{
Concrete: concreteResource,
Schema: n.Schema,
Count: count,
Addr: n.ResourceAddr(),
},
// Add the count orphans. As these are orphaned refresh nodes, we add them
// directly as NodeDestroyableDataResource.
&OrphanResourceCountTransformer{
Concrete: concreteResourceDestroyable,
Count: count,
Addr: n.ResourceAddr(),
State: state,
},
// Attach the state
&AttachStateTransformer{State: state},
// Targeting
&TargetsTransformer{Targets: n.Targets},
// Connect references so ordering is correct
&ReferenceTransformer{},
// Make sure there is a single root
&RootTransformer{},
}
// Build the graph
b := &BasicGraphBuilder{
Steps: steps,
Validate: true,
Name: "NodeRefreshableDataResource",
}
graph, diags := b.Build(ctx.Path())
return graph, diags.ErrWithWarnings()
}
// NodeRefreshableDataResourceInstance represents a single resource instance
// that is refreshable.
type NodeRefreshableDataResourceInstance struct {
*NodeAbstractResourceInstance
}
// GraphNodeEvalable
func (n *NodeRefreshableDataResourceInstance) EvalTree() EvalNode {
addr := n.ResourceInstanceAddr()
// State still uses legacy-style internal ids, so we need to shim to get
// a suitable key to use.
stateId := NewLegacyResourceInstanceAddress(addr).stateId()
// Get the state if we have it. If not, we'll build it.
rs := n.ResourceState
if rs == nil {
rs = &ResourceState{
Type: addr.Resource.Resource.Type,
Provider: n.ResolvedProvider.String(),
}
}
// If we have a configuration then we'll build a fresh state.
if n.Config != nil {
rs = &ResourceState{
Type: addr.Resource.Resource.Type,
Provider: n.ResolvedProvider.String(),
Dependencies: n.StateReferences(),
}
}
// These variables are the state for the eval sequence below, and are
// updated through pointers.
var provider ResourceProvider
var providerSchema *ProviderSchema
var diff *InstanceDiff
var state *InstanceState
var configVal cty.Value
return &EvalSequence{
Nodes: []EvalNode{
// Always destroy the existing state first, since we must
// make sure that values from a previous read will not
// get interpolated if we end up needing to defer our
// loading until apply time.
&EvalWriteState{
Name: stateId,
ResourceType: rs.Type,
Provider: n.ResolvedProvider,
Dependencies: rs.Dependencies,
State: &state, // state is nil here
},
&EvalGetProvider{
Addr: n.ResolvedProvider,
Output: &provider,
Schema: &providerSchema,
},
&EvalReadDataDiff{
Addr: addr.Resource,
Config: n.Config,
Provider: &provider,
ProviderSchema: &providerSchema,
Output: &diff,
OutputValue: &configVal,
OutputState: &state,
},
// The rest of this pass can proceed only if there are no
// computed values in our config.
// (If there are, we'll deal with this during the plan and
// apply phases.)
&EvalIf{
If: func(ctx EvalContext) (bool, error) {
if !configVal.IsWhollyKnown() {
return true, EvalEarlyExitError{}
}
// If the config explicitly has a depends_on for this
// data source, assume the intention is to prevent
// refreshing ahead of that dependency.
if len(n.Config.DependsOn) > 0 {
return true, EvalEarlyExitError{}
}
return true, nil
},
Then: EvalNoop{},
},
&EvalReadDataApply{
Addr: addr.Resource,
Diff: &diff,
Provider: &provider,
Output: &state,
},
&EvalWriteState{
Name: stateId,
ResourceType: rs.Type,
Provider: n.ResolvedProvider,
Dependencies: rs.Dependencies,
State: &state,
},
&EvalUpdateStateHook{},
},
}
}