opentofu/terraform/transform_provider.go

551 lines
14 KiB
Go

package terraform
import (
"fmt"
"log"
"strings"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/terraform/config"
"github.com/hashicorp/terraform/dag"
"github.com/hashicorp/terraform/dot"
)
// GraphNodeProvider is an interface that nodes that can be a provider
// must implement. The ProviderName returned is the name of the provider
// they satisfy.
type GraphNodeProvider interface {
ProviderName() string
ProviderConfig() *config.RawConfig
}
// GraphNodeCloseProvider is an interface that nodes that can be a close
// provider must implement. The CloseProviderName returned is the name of
// the provider they satisfy.
type GraphNodeCloseProvider interface {
CloseProviderName() string
}
// GraphNodeProviderConsumer is an interface that nodes that require
// a provider must implement. ProvidedBy must return the name of the provider
// to use.
type GraphNodeProviderConsumer interface {
ProvidedBy() []string
}
// DisableProviderTransformer "disables" any providers that are only
// depended on by modules.
type DisableProviderTransformer struct{}
func (t *DisableProviderTransformer) Transform(g *Graph) error {
// Since we're comparing against edges, we need to make sure we connect
g.ConnectDependents()
for _, v := range g.Vertices() {
// We only care about providers
pn, ok := v.(GraphNodeProvider)
if !ok || pn.ProviderName() == "" {
continue
}
// Go through all the up-edges (things that depend on this
// provider) and if any is not a module, then ignore this node.
nonModule := false
for _, sourceRaw := range g.UpEdges(v).List() {
source := sourceRaw.(dag.Vertex)
cn, ok := source.(graphNodeConfig)
if !ok {
nonModule = true
break
}
if cn.ConfigType() != GraphNodeConfigTypeModule {
nonModule = true
break
}
}
if nonModule {
// We found something that depends on this provider that
// isn't a module, so skip it.
continue
}
// Disable the provider by replacing it with a "disabled" provider
disabled := &graphNodeDisabledProvider{GraphNodeProvider: pn}
if !g.Replace(v, disabled) {
panic(fmt.Sprintf(
"vertex disappeared from under us: %s",
dag.VertexName(v)))
}
}
return nil
}
// ProviderTransformer is a GraphTransformer that maps resources to
// providers within the graph. This will error if there are any resources
// that don't map to proper resources.
type ProviderTransformer struct{}
func (t *ProviderTransformer) Transform(g *Graph) error {
// Go through the other nodes and match them to providers they need
var err error
m := providerVertexMap(g)
for _, v := range g.Vertices() {
if pv, ok := v.(GraphNodeProviderConsumer); ok {
for _, p := range pv.ProvidedBy() {
target := m[providerMapKey(p, pv)]
if target == nil {
println(fmt.Sprintf("%#v\n\n%#v", m, providerMapKey(p, pv)))
err = multierror.Append(err, fmt.Errorf(
"%s: provider %s couldn't be found",
dag.VertexName(v), p))
continue
}
g.Connect(dag.BasicEdge(v, target))
}
}
}
return err
}
// CloseProviderTransformer is a GraphTransformer that adds nodes to the
// graph that will close open provider connections that aren't needed anymore.
// A provider connection is not needed anymore once all depended resources
// in the graph are evaluated.
type CloseProviderTransformer struct{}
func (t *CloseProviderTransformer) Transform(g *Graph) error {
pm := providerVertexMap(g)
cpm := closeProviderVertexMap(g)
var err error
for _, v := range g.Vertices() {
if pv, ok := v.(GraphNodeProviderConsumer); ok {
for _, p := range pv.ProvidedBy() {
key := p
source := cpm[key]
if source == nil {
// Create a new graphNodeCloseProvider and add it to the graph
source = &graphNodeCloseProvider{ProviderNameValue: p}
g.Add(source)
// Close node needs to depend on provider
provider, ok := pm[key]
if !ok {
err = multierror.Append(err, fmt.Errorf(
"%s: provider %s couldn't be found for closing",
dag.VertexName(v), p))
continue
}
g.Connect(dag.BasicEdge(source, provider))
// Make sure we also add the new graphNodeCloseProvider to the map
// so we don't create and add any duplicate graphNodeCloseProviders.
cpm[key] = source
}
// Close node depends on all nodes provided by the provider
g.Connect(dag.BasicEdge(source, v))
}
}
}
return err
}
// MissingProviderTransformer is a GraphTransformer that adds nodes
// for missing providers into the graph. Specifically, it creates provider
// configuration nodes for all the providers that we support. These are
// pruned later during an optimization pass.
type MissingProviderTransformer struct {
// Providers is the list of providers we support.
Providers []string
}
func (t *MissingProviderTransformer) Transform(g *Graph) error {
// Create a set of our supported providers
supported := make(map[string]struct{}, len(t.Providers))
for _, v := range t.Providers {
supported[v] = struct{}{}
}
// Get the map of providers we already have in our graph
m := providerVertexMap(g)
// Go through all the provider consumers and make sure we add
// that provider if it is missing. We use a for loop here instead
// of "range" since we'll modify check as we go to add more to check.
check := g.Vertices()
for i := 0; i < len(check); i++ {
v := check[i]
pv, ok := v.(GraphNodeProviderConsumer)
if !ok {
continue
}
// If this node has a subpath, then we use that as a prefix
// into our map to check for an existing provider.
var path []string
if sp, ok := pv.(GraphNodeSubPath); ok {
raw := normalizeModulePath(sp.Path())
if len(raw) > len(rootModulePath) {
path = raw
}
}
for _, p := range pv.ProvidedBy() {
key := providerMapKey(p, pv)
if _, ok := m[key]; ok {
// This provider already exists as a configure node
continue
}
// If the provider has an alias in it, we just want the type
ptype := p
if idx := strings.IndexRune(p, '.'); idx != -1 {
ptype = p[:idx]
}
if _, ok := supported[ptype]; !ok {
// If we don't support the provider type, skip it.
// Validation later will catch this as an error.
continue
}
// Add the missing provider node to the graph
raw := &graphNodeProvider{ProviderNameValue: p}
var v dag.Vertex = raw
if len(path) > 0 {
var err error
v, err = raw.Flatten(path)
if err != nil {
return err
}
// We'll need the parent provider as well, so let's
// add a dummy node to check to make sure that we add
// that parent provider.
check = append(check, &graphNodeProviderConsumerDummy{
ProviderValue: p,
PathValue: path[:len(path)-1],
})
}
m[key] = g.Add(v)
}
}
return nil
}
// PruneProviderTransformer is a GraphTransformer that prunes all the
// providers that aren't needed from the graph. A provider is unneeded if
// no resource or module is using that provider.
type PruneProviderTransformer struct{}
func (t *PruneProviderTransformer) Transform(g *Graph) error {
for _, v := range g.Vertices() {
// We only care about the providers
if pn, ok := v.(GraphNodeProvider); !ok || pn.ProviderName() == "" {
continue
}
// Does anything depend on this? If not, then prune it.
if s := g.UpEdges(v); s.Len() == 0 {
if nv, ok := v.(dag.NamedVertex); ok {
log.Printf("[DEBUG] Pruning provider with no dependencies: %s", nv.Name())
}
g.Remove(v)
}
}
return nil
}
// providerMapKey is a helper that gives us the key to use for the
// maps returned by things such as providerVertexMap.
func providerMapKey(k string, v dag.Vertex) string {
pathPrefix := ""
if sp, ok := v.(GraphNodeSubPath); ok {
raw := normalizeModulePath(sp.Path())
if len(raw) > len(rootModulePath) {
pathPrefix = modulePrefixStr(raw) + "."
}
}
return pathPrefix + k
}
func providerVertexMap(g *Graph) map[string]dag.Vertex {
m := make(map[string]dag.Vertex)
for _, v := range g.Vertices() {
if pv, ok := v.(GraphNodeProvider); ok {
m[pv.ProviderName()] = v
}
}
return m
}
func closeProviderVertexMap(g *Graph) map[string]dag.Vertex {
m := make(map[string]dag.Vertex)
for _, v := range g.Vertices() {
if pv, ok := v.(GraphNodeCloseProvider); ok {
m[pv.CloseProviderName()] = v
}
}
return m
}
type graphNodeDisabledProvider struct {
GraphNodeProvider
}
// GraphNodeEvalable impl.
func (n *graphNodeDisabledProvider) EvalTree() EvalNode {
var resourceConfig *ResourceConfig
return &EvalOpFilter{
Ops: []walkOperation{walkInput, walkValidate, walkRefresh, walkPlan, walkApply, walkDestroy},
Node: &EvalSequence{
Nodes: []EvalNode{
&EvalInterpolate{
Config: n.ProviderConfig(),
Output: &resourceConfig,
},
&EvalBuildProviderConfig{
Provider: n.ProviderName(),
Config: &resourceConfig,
Output: &resourceConfig,
},
&EvalSetProviderConfig{
Provider: n.ProviderName(),
Config: &resourceConfig,
},
},
},
}
}
// GraphNodeFlattenable impl.
func (n *graphNodeDisabledProvider) Flatten(p []string) (dag.Vertex, error) {
return &graphNodeDisabledProviderFlat{
graphNodeDisabledProvider: n,
PathValue: p,
}, nil
}
func (n *graphNodeDisabledProvider) Name() string {
return fmt.Sprintf("%s (disabled)", dag.VertexName(n.GraphNodeProvider))
}
// GraphNodeDotter impl.
func (n *graphNodeDisabledProvider) DotNode(name string, opts *GraphDotOpts) *dot.Node {
return dot.NewNode(name, map[string]string{
"label": n.Name(),
"shape": "diamond",
})
}
// GraphNodeDotterOrigin impl.
func (n *graphNodeDisabledProvider) DotOrigin() bool {
return true
}
// GraphNodeDependable impl.
func (n *graphNodeDisabledProvider) DependableName() []string {
return []string{"provider." + n.ProviderName()}
}
// GraphNodeProvider impl.
func (n *graphNodeDisabledProvider) ProviderName() string {
return n.GraphNodeProvider.ProviderName()
}
// GraphNodeProvider impl.
func (n *graphNodeDisabledProvider) ProviderConfig() *config.RawConfig {
return n.GraphNodeProvider.ProviderConfig()
}
// Same as graphNodeDisabledProvider, but for flattening
type graphNodeDisabledProviderFlat struct {
*graphNodeDisabledProvider
PathValue []string
}
func (n *graphNodeDisabledProviderFlat) Name() string {
return fmt.Sprintf(
"%s.%s", modulePrefixStr(n.PathValue), n.graphNodeDisabledProvider.Name())
}
func (n *graphNodeDisabledProviderFlat) Path() []string {
return n.PathValue
}
func (n *graphNodeDisabledProviderFlat) ProviderName() string {
return fmt.Sprintf(
"%s.%s", modulePrefixStr(n.PathValue),
n.graphNodeDisabledProvider.ProviderName())
}
// GraphNodeDependable impl.
func (n *graphNodeDisabledProviderFlat) DependableName() []string {
return modulePrefixList(
n.graphNodeDisabledProvider.DependableName(),
modulePrefixStr(n.PathValue))
}
func (n *graphNodeDisabledProviderFlat) DependentOn() []string {
var result []string
// If we're in a module, then depend on our parent's provider
if len(n.PathValue) > 1 {
prefix := modulePrefixStr(n.PathValue[:len(n.PathValue)-1])
result = modulePrefixList(
n.graphNodeDisabledProvider.DependableName(), prefix)
}
return result
}
type graphNodeCloseProvider struct {
ProviderNameValue string
}
func (n *graphNodeCloseProvider) Name() string {
return fmt.Sprintf("provider.%s (close)", n.ProviderNameValue)
}
// GraphNodeEvalable impl.
func (n *graphNodeCloseProvider) EvalTree() EvalNode {
return CloseProviderEvalTree(n.ProviderNameValue)
}
// GraphNodeDependable impl.
func (n *graphNodeCloseProvider) DependableName() []string {
return []string{n.Name()}
}
func (n *graphNodeCloseProvider) CloseProviderName() string {
return n.ProviderNameValue
}
// GraphNodeDotter impl.
func (n *graphNodeCloseProvider) DotNode(name string, opts *GraphDotOpts) *dot.Node {
if !opts.Verbose {
return nil
}
return dot.NewNode(name, map[string]string{
"label": n.Name(),
"shape": "diamond",
})
}
type graphNodeProvider struct {
ProviderNameValue string
}
func (n *graphNodeProvider) Name() string {
return fmt.Sprintf("provider.%s", n.ProviderNameValue)
}
// GraphNodeEvalable impl.
func (n *graphNodeProvider) EvalTree() EvalNode {
return ProviderEvalTree(n.ProviderNameValue, nil)
}
// GraphNodeDependable impl.
func (n *graphNodeProvider) DependableName() []string {
return []string{n.Name()}
}
func (n *graphNodeProvider) ProviderName() string {
return n.ProviderNameValue
}
func (n *graphNodeProvider) ProviderConfig() *config.RawConfig {
return nil
}
// GraphNodeDotter impl.
func (n *graphNodeProvider) DotNode(name string, opts *GraphDotOpts) *dot.Node {
return dot.NewNode(name, map[string]string{
"label": n.Name(),
"shape": "diamond",
})
}
// GraphNodeDotterOrigin impl.
func (n *graphNodeProvider) DotOrigin() bool {
return true
}
// GraphNodeFlattenable impl.
func (n *graphNodeProvider) Flatten(p []string) (dag.Vertex, error) {
return &graphNodeProviderFlat{
graphNodeProvider: n,
PathValue: p,
}, nil
}
// Same as graphNodeMissingProvider, but for flattening
type graphNodeProviderFlat struct {
*graphNodeProvider
PathValue []string
}
func (n *graphNodeProviderFlat) Name() string {
return fmt.Sprintf(
"%s.%s", modulePrefixStr(n.PathValue), n.graphNodeProvider.Name())
}
func (n *graphNodeProviderFlat) Path() []string {
return n.PathValue
}
func (n *graphNodeProviderFlat) ProviderName() string {
return fmt.Sprintf(
"%s.%s", modulePrefixStr(n.PathValue),
n.graphNodeProvider.ProviderName())
}
// GraphNodeDependable impl.
func (n *graphNodeProviderFlat) DependableName() []string {
return []string{n.Name()}
}
func (n *graphNodeProviderFlat) DependentOn() []string {
var result []string
// If we're in a module, then depend on our parent's provider
if len(n.PathValue) > 1 {
prefix := modulePrefixStr(n.PathValue[:len(n.PathValue)-1])
result = modulePrefixList(n.graphNodeProvider.DependableName(), prefix)
}
return result
}
// graphNodeProviderConsumerDummy is a struct that never enters the real
// graph (though it could to no ill effect). It implements
// GraphNodeProviderConsumer and GraphNodeSubpath as a way to force
// certain transformations.
type graphNodeProviderConsumerDummy struct {
ProviderValue string
PathValue []string
}
func (n *graphNodeProviderConsumerDummy) Path() []string {
return n.PathValue
}
func (n *graphNodeProviderConsumerDummy) ProvidedBy() []string {
return []string{n.ProviderValue}
}