opentofu/config/hcl2shim/values.go
Martin Atkins 88e76fa9ef configs/configschema: Introduce the NestingGroup mode for blocks
In study of existing providers we've found a pattern we werent previously
accounting for of using a nested block type to represent a group of
arguments that relate to a particular feature that is always enabled but
where it improves configuration readability to group all of its settings
together in a nested block.

The existing NestingSingle was not a good fit for this because it is
designed under the assumption that the presence or absence of the block
has some significance in enabling or disabling the relevant feature, and
so for these always-active cases we'd generate a misleading plan where
the settings for the feature appear totally absent, rather than showing
the default values that will be selected.

NestingGroup is, therefore, a slight variation of NestingSingle where
presence vs. absence of the block is not distinguishable (it's never null)
and instead its contents are treated as unset when the block is absent.
This then in turn causes any default values associated with the nested
arguments to be honored and displayed in the plan whenever the block is
not explicitly configured.

The current SDK cannot activate this mode, but that's okay because its
"legacy type system" opt-out flag allows it to force a block to be
processed in this way anyway. We're adding this now so that we can
introduce the feature in a future SDK without causing a breaking change
to the protocol, since the set of possible block nesting modes is not
extensible.
2019-04-10 14:53:52 -07:00

354 lines
9.9 KiB
Go

package hcl2shim
import (
"fmt"
"math/big"
"github.com/hashicorp/hil/ast"
"github.com/zclconf/go-cty/cty"
"github.com/hashicorp/terraform/configs/configschema"
)
// UnknownVariableValue is a sentinel value that can be used
// to denote that the value of a variable is unknown at this time.
// RawConfig uses this information to build up data about
// unknown keys.
const UnknownVariableValue = "74D93920-ED26-11E3-AC10-0800200C9A66"
// ConfigValueFromHCL2Block is like ConfigValueFromHCL2 but it works only for
// known object values and uses the provided block schema to perform some
// additional normalization to better mimic the shape of value that the old
// HCL1/HIL-based codepaths would've produced.
//
// In particular, it discards the collections that we use to represent nested
// blocks (other than NestingSingle) if they are empty, which better mimics
// the HCL1 behavior because HCL1 had no knowledge of the schema and so didn't
// know that an unspecified block _could_ exist.
//
// The given object value must conform to the schema's implied type or this
// function will panic or produce incorrect results.
//
// This is primarily useful for the final transition from new-style values to
// terraform.ResourceConfig before calling to a legacy provider, since
// helper/schema (the old provider SDK) is particularly sensitive to these
// subtle differences within its validation code.
func ConfigValueFromHCL2Block(v cty.Value, schema *configschema.Block) map[string]interface{} {
if v.IsNull() {
return nil
}
if !v.IsKnown() {
panic("ConfigValueFromHCL2Block used with unknown value")
}
if !v.Type().IsObjectType() {
panic(fmt.Sprintf("ConfigValueFromHCL2Block used with non-object value %#v", v))
}
atys := v.Type().AttributeTypes()
ret := make(map[string]interface{})
for name := range schema.Attributes {
if _, exists := atys[name]; !exists {
continue
}
av := v.GetAttr(name)
if av.IsNull() {
// Skip nulls altogether, to better mimic how HCL1 would behave
continue
}
ret[name] = ConfigValueFromHCL2(av)
}
for name, blockS := range schema.BlockTypes {
if _, exists := atys[name]; !exists {
continue
}
bv := v.GetAttr(name)
if !bv.IsKnown() {
ret[name] = UnknownVariableValue
continue
}
if bv.IsNull() {
continue
}
switch blockS.Nesting {
case configschema.NestingSingle, configschema.NestingGroup:
ret[name] = ConfigValueFromHCL2Block(bv, &blockS.Block)
case configschema.NestingList, configschema.NestingSet:
l := bv.LengthInt()
if l == 0 {
// skip empty collections to better mimic how HCL1 would behave
continue
}
elems := make([]interface{}, 0, l)
for it := bv.ElementIterator(); it.Next(); {
_, ev := it.Element()
if !ev.IsKnown() {
elems = append(elems, UnknownVariableValue)
continue
}
elems = append(elems, ConfigValueFromHCL2Block(ev, &blockS.Block))
}
ret[name] = elems
case configschema.NestingMap:
if bv.LengthInt() == 0 {
// skip empty collections to better mimic how HCL1 would behave
continue
}
elems := make(map[string]interface{})
for it := bv.ElementIterator(); it.Next(); {
ek, ev := it.Element()
if !ev.IsKnown() {
elems[ek.AsString()] = UnknownVariableValue
continue
}
elems[ek.AsString()] = ConfigValueFromHCL2Block(ev, &blockS.Block)
}
ret[name] = elems
}
}
return ret
}
// ConfigValueFromHCL2 converts a value from HCL2 (really, from the cty dynamic
// types library that HCL2 uses) to a value type that matches what would've
// been produced from the HCL-based interpolator for an equivalent structure.
//
// This function will transform a cty null value into a Go nil value, which
// isn't a possible outcome of the HCL/HIL-based decoder and so callers may
// need to detect and reject any null values.
func ConfigValueFromHCL2(v cty.Value) interface{} {
if !v.IsKnown() {
return UnknownVariableValue
}
if v.IsNull() {
return nil
}
switch v.Type() {
case cty.Bool:
return v.True() // like HCL.BOOL
case cty.String:
return v.AsString() // like HCL token.STRING or token.HEREDOC
case cty.Number:
// We can't match HCL _exactly_ here because it distinguishes between
// int and float values, but we'll get as close as we can by using
// an int if the number is exactly representable, and a float if not.
// The conversion to float will force precision to that of a float64,
// which is potentially losing information from the specific number
// given, but no worse than what HCL would've done in its own conversion
// to float.
f := v.AsBigFloat()
if i, acc := f.Int64(); acc == big.Exact {
// if we're on a 32-bit system and the number is too big for 32-bit
// int then we'll fall through here and use a float64.
const MaxInt = int(^uint(0) >> 1)
const MinInt = -MaxInt - 1
if i <= int64(MaxInt) && i >= int64(MinInt) {
return int(i) // Like HCL token.NUMBER
}
}
f64, _ := f.Float64()
return f64 // like HCL token.FLOAT
}
if v.Type().IsListType() || v.Type().IsSetType() || v.Type().IsTupleType() {
l := make([]interface{}, 0, v.LengthInt())
it := v.ElementIterator()
for it.Next() {
_, ev := it.Element()
l = append(l, ConfigValueFromHCL2(ev))
}
return l
}
if v.Type().IsMapType() || v.Type().IsObjectType() {
l := make(map[string]interface{})
it := v.ElementIterator()
for it.Next() {
ek, ev := it.Element()
cv := ConfigValueFromHCL2(ev)
if cv != nil {
l[ek.AsString()] = cv
}
}
return l
}
// If we fall out here then we have some weird type that we haven't
// accounted for. This should never happen unless the caller is using
// capsule types, and we don't currently have any such types defined.
panic(fmt.Errorf("can't convert %#v to config value", v))
}
// HCL2ValueFromConfigValue is the opposite of configValueFromHCL2: it takes
// a value as would be returned from the old interpolator and turns it into
// a cty.Value so it can be used within, for example, an HCL2 EvalContext.
func HCL2ValueFromConfigValue(v interface{}) cty.Value {
if v == nil {
return cty.NullVal(cty.DynamicPseudoType)
}
if v == UnknownVariableValue {
return cty.DynamicVal
}
switch tv := v.(type) {
case bool:
return cty.BoolVal(tv)
case string:
return cty.StringVal(tv)
case int:
return cty.NumberIntVal(int64(tv))
case float64:
return cty.NumberFloatVal(tv)
case []interface{}:
vals := make([]cty.Value, len(tv))
for i, ev := range tv {
vals[i] = HCL2ValueFromConfigValue(ev)
}
return cty.TupleVal(vals)
case map[string]interface{}:
vals := map[string]cty.Value{}
for k, ev := range tv {
vals[k] = HCL2ValueFromConfigValue(ev)
}
return cty.ObjectVal(vals)
default:
// HCL/HIL should never generate anything that isn't caught by
// the above, so if we get here something has gone very wrong.
panic(fmt.Errorf("can't convert %#v to cty.Value", v))
}
}
func HILVariableFromHCL2Value(v cty.Value) ast.Variable {
if v.IsNull() {
// Caller should guarantee/check this before calling
panic("Null values cannot be represented in HIL")
}
if !v.IsKnown() {
return ast.Variable{
Type: ast.TypeUnknown,
Value: UnknownVariableValue,
}
}
switch v.Type() {
case cty.Bool:
return ast.Variable{
Type: ast.TypeBool,
Value: v.True(),
}
case cty.Number:
v := ConfigValueFromHCL2(v)
switch tv := v.(type) {
case int:
return ast.Variable{
Type: ast.TypeInt,
Value: tv,
}
case float64:
return ast.Variable{
Type: ast.TypeFloat,
Value: tv,
}
default:
// should never happen
panic("invalid return value for configValueFromHCL2")
}
case cty.String:
return ast.Variable{
Type: ast.TypeString,
Value: v.AsString(),
}
}
if v.Type().IsListType() || v.Type().IsSetType() || v.Type().IsTupleType() {
l := make([]ast.Variable, 0, v.LengthInt())
it := v.ElementIterator()
for it.Next() {
_, ev := it.Element()
l = append(l, HILVariableFromHCL2Value(ev))
}
// If we were given a tuple then this could actually produce an invalid
// list with non-homogenous types, which we expect to be caught inside
// HIL just like a user-supplied non-homogenous list would be.
return ast.Variable{
Type: ast.TypeList,
Value: l,
}
}
if v.Type().IsMapType() || v.Type().IsObjectType() {
l := make(map[string]ast.Variable)
it := v.ElementIterator()
for it.Next() {
ek, ev := it.Element()
l[ek.AsString()] = HILVariableFromHCL2Value(ev)
}
// If we were given an object then this could actually produce an invalid
// map with non-homogenous types, which we expect to be caught inside
// HIL just like a user-supplied non-homogenous map would be.
return ast.Variable{
Type: ast.TypeMap,
Value: l,
}
}
// If we fall out here then we have some weird type that we haven't
// accounted for. This should never happen unless the caller is using
// capsule types, and we don't currently have any such types defined.
panic(fmt.Errorf("can't convert %#v to HIL variable", v))
}
func HCL2ValueFromHILVariable(v ast.Variable) cty.Value {
switch v.Type {
case ast.TypeList:
vals := make([]cty.Value, len(v.Value.([]ast.Variable)))
for i, ev := range v.Value.([]ast.Variable) {
vals[i] = HCL2ValueFromHILVariable(ev)
}
return cty.TupleVal(vals)
case ast.TypeMap:
vals := make(map[string]cty.Value, len(v.Value.(map[string]ast.Variable)))
for k, ev := range v.Value.(map[string]ast.Variable) {
vals[k] = HCL2ValueFromHILVariable(ev)
}
return cty.ObjectVal(vals)
default:
return HCL2ValueFromConfigValue(v.Value)
}
}
func HCL2TypeForHILType(hilType ast.Type) cty.Type {
switch hilType {
case ast.TypeAny:
return cty.DynamicPseudoType
case ast.TypeUnknown:
return cty.DynamicPseudoType
case ast.TypeBool:
return cty.Bool
case ast.TypeInt:
return cty.Number
case ast.TypeFloat:
return cty.Number
case ast.TypeString:
return cty.String
case ast.TypeList:
return cty.List(cty.DynamicPseudoType)
case ast.TypeMap:
return cty.Map(cty.DynamicPseudoType)
default:
return cty.NilType // equilvalent to ast.TypeInvalid
}
}