opentofu/internal/configs/provider.go
Martin Atkins 1879a39d2d configs: Refined error messages for mismatched provider passing
This set of diagnostic messages is under a number of unusual constraints
that make them tough to get right:
 - They are discussing a couple finicky concepts which authors are
   likely to be encountering for the first time in these error messages:
   the idea of "local names" for providers, the relationship between those
   and provider source addresses, and additional ("aliased") provider
   configurations.
 - They are reporting concerns that span across a module call boundary,
   and so need to take care to be clear about whether they are talking
   about a problem in the caller or a problem in the callee.
 - Some of them are effectively deprecation warnings for features that
   might be in use by a third-party module that the user doesn't control,
   in which case they have no recourse to address them aside from opening
   a feature request with the upstream module maintainer.
 - Terraform has, for backward-compatibility reasons, a lot of implied
   default behaviors regarding providers and provider configurations,
   and these errors can arise in situations where Terraform's assumptions
   don't match the author's intent, and so we need to be careful to
   explain what Terraform assumed in order to make the messages
   understandable.

After seeing some confusion with these messages in the community, and
being somewhat confused by some of them myself, I decided to try to edit
them a bit for consistency of terminology (both between the messages and
with terminology in our docs), being explicit about caller vs. callee
by naming them in the messages, and making explicit what would otherwise
be implicit with regard to the correspondences between provider source
addresses and local names.

My assumed audience for all of these messages is the author of the caller
module, because it's the caller who is responsible for creating the
relationship between caller and callee. As much as possible I tried to
make the messages include specific actions for that author to take to
quiet the warning or fix the error, but some of the warnings are only
fixable by the callee's maintainer and so those messages are, in effect,
a suggestion to send a request to the author to stop using a deprecated
feature.

I think these new messages are also not ideal by any means, because it's
just tough to pack so much information into concise messages while being
clear and consistent, but I hope at least this will give users seeing
these messages enough context to infer what's going on, possibly with the
help of our documentation.

I intentionally didn't change which cases Terraform will return warnings
or errors -- only the message texts -- although I did highlight in a
comment in one of the tests that what it is a asserting seems a bit
suspicious to me. I don't intend to address that here; instead, I intend
that note to be something to refer to if we later see a bug report that
calls that behavior into question.

This does actually silence some _unrelated_ warnings and errors in cases
where a provider block has an invalid provider local name as its label,
because our other functions for dealing with provider addresses are
written to panic if given invalid addresses under the assumption that
earlier code will have guarded against that. Doing this allowed for the
provider configuration validation logic to safely include more information
about the configuration as helpful context, without risking tripping over
known-invalid configuration and panicking in the process.
2022-03-10 10:05:56 -08:00

283 lines
9.3 KiB
Go

package configs
import (
"fmt"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/gohcl"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/hashicorp/terraform/internal/addrs"
"github.com/hashicorp/terraform/internal/tfdiags"
)
// Provider represents a "provider" block in a module or file. A provider
// block is a provider configuration, and there can be zero or more
// configurations for each actual provider.
type Provider struct {
Name string
NameRange hcl.Range
Alias string
AliasRange *hcl.Range // nil if no alias set
Version VersionConstraint
Config hcl.Body
DeclRange hcl.Range
// TODO: this may not be set in some cases, so it is not yet suitable for
// use outside of this package. We currently only use it for internal
// validation, but once we verify that this can be set in all cases, we can
// export this so providers don't need to be re-resolved.
// This same field is also added to the ProviderConfigRef struct.
providerType addrs.Provider
}
func decodeProviderBlock(block *hcl.Block) (*Provider, hcl.Diagnostics) {
var diags hcl.Diagnostics
content, config, moreDiags := block.Body.PartialContent(providerBlockSchema)
diags = append(diags, moreDiags...)
// Provider names must be localized. Produce an error with a message
// indicating the action the user can take to fix this message if the local
// name is not localized.
name := block.Labels[0]
nameDiags := checkProviderNameNormalized(name, block.DefRange)
diags = append(diags, nameDiags...)
if nameDiags.HasErrors() {
// If the name is invalid then we mustn't produce a result because
// downstreams could try to use it as a provider type and then crash.
return nil, diags
}
provider := &Provider{
Name: name,
NameRange: block.LabelRanges[0],
Config: config,
DeclRange: block.DefRange,
}
if attr, exists := content.Attributes["alias"]; exists {
valDiags := gohcl.DecodeExpression(attr.Expr, nil, &provider.Alias)
diags = append(diags, valDiags...)
provider.AliasRange = attr.Expr.Range().Ptr()
if !hclsyntax.ValidIdentifier(provider.Alias) {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid provider configuration alias",
Detail: fmt.Sprintf("An alias must be a valid name. %s", badIdentifierDetail),
})
}
}
if attr, exists := content.Attributes["version"]; exists {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagWarning,
Summary: "Version constraints inside provider configuration blocks are deprecated",
Detail: "Terraform 0.13 and earlier allowed provider version constraints inside the provider configuration block, but that is now deprecated and will be removed in a future version of Terraform. To silence this warning, move the provider version constraint into the required_providers block.",
Subject: attr.Expr.Range().Ptr(),
})
var versionDiags hcl.Diagnostics
provider.Version, versionDiags = decodeVersionConstraint(attr)
diags = append(diags, versionDiags...)
}
// Reserved attribute names
for _, name := range []string{"count", "depends_on", "for_each", "source"} {
if attr, exists := content.Attributes[name]; exists {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Reserved argument name in provider block",
Detail: fmt.Sprintf("The provider argument name %q is reserved for use by Terraform in a future version.", name),
Subject: &attr.NameRange,
})
}
}
var seenEscapeBlock *hcl.Block
for _, block := range content.Blocks {
switch block.Type {
case "_":
if seenEscapeBlock != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Duplicate escaping block",
Detail: fmt.Sprintf(
"The special block type \"_\" can be used to force particular arguments to be interpreted as provider-specific rather than as meta-arguments, but each provider block can have only one such block. The first escaping block was at %s.",
seenEscapeBlock.DefRange,
),
Subject: &block.DefRange,
})
continue
}
seenEscapeBlock = block
// When there's an escaping block its content merges with the
// existing config we extracted earlier, so later decoding
// will see a blend of both.
provider.Config = hcl.MergeBodies([]hcl.Body{provider.Config, block.Body})
default:
// All of the other block types in our schema are reserved for
// future expansion.
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Reserved block type name in provider block",
Detail: fmt.Sprintf("The block type name %q is reserved for use by Terraform in a future version.", block.Type),
Subject: &block.TypeRange,
})
}
}
return provider, diags
}
// Addr returns the address of the receiving provider configuration, relative
// to its containing module.
func (p *Provider) Addr() addrs.LocalProviderConfig {
return addrs.LocalProviderConfig{
LocalName: p.Name,
Alias: p.Alias,
}
}
func (p *Provider) moduleUniqueKey() string {
if p.Alias != "" {
return fmt.Sprintf("%s.%s", p.Name, p.Alias)
}
return p.Name
}
// ParseProviderConfigCompact parses the given absolute traversal as a relative
// provider address in compact form. The following are examples of traversals
// that can be successfully parsed as compact relative provider configuration
// addresses:
//
// aws
// aws.foo
//
// This function will panic if given a relative traversal.
//
// If the returned diagnostics contains errors then the result value is invalid
// and must not be used.
func ParseProviderConfigCompact(traversal hcl.Traversal) (addrs.LocalProviderConfig, tfdiags.Diagnostics) {
var diags tfdiags.Diagnostics
ret := addrs.LocalProviderConfig{
LocalName: traversal.RootName(),
}
if len(traversal) < 2 {
// Just a type name, then.
return ret, diags
}
aliasStep := traversal[1]
switch ts := aliasStep.(type) {
case hcl.TraverseAttr:
ret.Alias = ts.Name
return ret, diags
default:
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid provider configuration address",
Detail: "The provider type name must either stand alone or be followed by an alias name separated with a dot.",
Subject: aliasStep.SourceRange().Ptr(),
})
}
if len(traversal) > 2 {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid provider configuration address",
Detail: "Extraneous extra operators after provider configuration address.",
Subject: traversal[2:].SourceRange().Ptr(),
})
}
return ret, diags
}
// ParseProviderConfigCompactStr is a helper wrapper around ParseProviderConfigCompact
// that takes a string and parses it with the HCL native syntax traversal parser
// before interpreting it.
//
// This should be used only in specialized situations since it will cause the
// created references to not have any meaningful source location information.
// If a reference string is coming from a source that should be identified in
// error messages then the caller should instead parse it directly using a
// suitable function from the HCL API and pass the traversal itself to
// ParseProviderConfigCompact.
//
// Error diagnostics are returned if either the parsing fails or the analysis
// of the traversal fails. There is no way for the caller to distinguish the
// two kinds of diagnostics programmatically. If error diagnostics are returned
// then the returned address is invalid.
func ParseProviderConfigCompactStr(str string) (addrs.LocalProviderConfig, tfdiags.Diagnostics) {
var diags tfdiags.Diagnostics
traversal, parseDiags := hclsyntax.ParseTraversalAbs([]byte(str), "", hcl.Pos{Line: 1, Column: 1})
diags = diags.Append(parseDiags)
if parseDiags.HasErrors() {
return addrs.LocalProviderConfig{}, diags
}
addr, addrDiags := ParseProviderConfigCompact(traversal)
diags = diags.Append(addrDiags)
return addr, diags
}
var providerBlockSchema = &hcl.BodySchema{
Attributes: []hcl.AttributeSchema{
{
Name: "alias",
},
{
Name: "version",
},
// Attribute names reserved for future expansion.
{Name: "count"},
{Name: "depends_on"},
{Name: "for_each"},
{Name: "source"},
},
Blocks: []hcl.BlockHeaderSchema{
{Type: "_"}, // meta-argument escaping block
// The rest of these are reserved for future expansion.
{Type: "lifecycle"},
{Type: "locals"},
},
}
// checkProviderNameNormalized verifies that the given string is already
// normalized and returns an error if not.
func checkProviderNameNormalized(name string, declrange hcl.Range) hcl.Diagnostics {
var diags hcl.Diagnostics
// verify that the provider local name is normalized
normalized, err := addrs.IsProviderPartNormalized(name)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid provider local name",
Detail: fmt.Sprintf("%s is an invalid provider local name: %s", name, err),
Subject: &declrange,
})
return diags
}
if !normalized {
// we would have returned this error already
normalizedProvider, _ := addrs.ParseProviderPart(name)
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid provider local name",
Detail: fmt.Sprintf("Provider names must be normalized. Replace %q with %q to fix this error.", name, normalizedProvider),
Subject: &declrange,
})
}
return diags
}