opentofu/internal/typeexpr/defaults.go
Alisdair McDiarmid 8f69e36e1b typeexpr: Add support for nested type defaults
In type constraints, object attributes may be marked as optional in
order to allow them to be omitted from input values. Doing so results in
filling the attribute value with a typed `null`.

This commit adds a new type `typeexpr.Defaults` which mirrors the
structure of a type constraint, storing default values for optional
attributes. This will allow specification of non-`null` default values
for attributes.

The `Defaults` type is a tree structure, each node containing a sub-tree
type, a map of children, and for object nodes, a map of defaults. The
keys in the children map depend on the type of the node:

- Object nodes have children for each attribute;
- Tuple nodes have children for each index, with indices converted to
  string values;
- Collection nodes have a single child at the empty string key.

When traversing this tree we must take this structure into account, with
special cases for map input values which may later be converted to
objects.

The traversal defined in this commit uses a pre-order transformer in
order to pre-populate descendent nodes before their defaults are
applied. This allows type nested type default values to be specified
more compactly.
2022-05-31 12:11:15 -04:00

158 lines
5.1 KiB
Go

package typeexpr
import (
"github.com/zclconf/go-cty/cty"
)
// Defaults represents a type tree which may contain default values for
// optional object attributes at any level. This is used to apply nested
// defaults to an input value before converting it to the concrete type.
type Defaults struct {
// Type of the node for which these defaults apply. This is necessary in
// order to determine how to inspect the Defaults and Children collections.
Type cty.Type
// DefaultValues contains the default values for each object attribute,
// indexed by attribute name.
DefaultValues map[string]cty.Value
// Children is a map of Defaults for elements contained in this type. This
// only applies to structural and collection types.
//
// The map is indexed by string instead of cty.Value because cty.Number
// instances are non-comparable, due to embedding a *big.Float.
//
// Collections have a single element type, which is stored at key "".
Children map[string]*Defaults
}
// Apply walks the given value, applying specified defaults wherever optional
// attributes are missing. The input and output values may have different
// types, and the result may still require type conversion to the final desired
// type.
//
// This function is permissive and does not report errors, assuming that the
// caller will have better context to report useful type conversion failure
// diagnostics.
func (d *Defaults) Apply(val cty.Value) cty.Value {
val, err := cty.TransformWithTransformer(val, &defaultsTransformer{defaults: d})
// The transformer should never return an error.
if err != nil {
panic(err)
}
return val
}
// defaultsTransformer implements cty.Transformer, as a pre-order traversal,
// applying defaults as it goes. The pre-order traversal allows us to specify
// defaults more loosely for structural types, as the defaults for the types
// will be applied to the default value later in the walk.
type defaultsTransformer struct {
defaults *Defaults
}
var _ cty.Transformer = (*defaultsTransformer)(nil)
func (t *defaultsTransformer) Enter(p cty.Path, v cty.Value) (cty.Value, error) {
// Cannot apply defaults to an unknown value
if !v.IsKnown() {
return v, nil
}
// Look up the defaults for this path.
defaults := t.defaults.traverse(p)
// If we have no defaults, nothing to do.
if len(defaults) == 0 {
return v, nil
}
// Ensure we are working with an object or map.
vt := v.Type()
if !vt.IsObjectType() && !vt.IsMapType() {
// Cannot apply defaults because the value type is incompatible.
// We'll ignore this and let the later conversion stage display a
// more useful diagnostic.
return v, nil
}
// Unmark the value and reapply the marks later.
v, valMarks := v.Unmark()
// Convert the given value into an attribute map (if it's non-null and
// non-empty).
attrs := make(map[string]cty.Value)
if !v.IsNull() && v.LengthInt() > 0 {
attrs = v.AsValueMap()
}
// Apply defaults where attributes are missing, constructing a new
// value with the same marks.
for attr, defaultValue := range defaults {
if _, ok := attrs[attr]; !ok {
attrs[attr] = defaultValue
}
}
// We construct an object even if the input value was a map, as the
// type of an attribute's default value may be incompatible with the
// map element type.
return cty.ObjectVal(attrs).WithMarks(valMarks), nil
}
func (t *defaultsTransformer) Exit(p cty.Path, v cty.Value) (cty.Value, error) {
return v, nil
}
// traverse walks the abstract defaults structure for a given path, returning
// a set of default values (if any are present) or nil (if not). This operation
// differs from applying a path to a value because we need to customize the
// traversal steps for collection types, where a single set of defaults can be
// applied to an arbitrary number of elements.
func (d *Defaults) traverse(path cty.Path) map[string]cty.Value {
if len(path) == 0 {
return d.DefaultValues
}
switch s := path[0].(type) {
case cty.GetAttrStep:
if d.Type.IsObjectType() {
// Attribute path steps are normally applied to objects, where each
// attribute may have different defaults.
return d.traverseChild(s.Name, path)
} else if d.Type.IsMapType() {
// Literal values for maps can result in attribute path steps, in which
// case we need to disregard the attribute name, as maps can have only
// one child.
return d.traverseChild("", path)
}
return nil
case cty.IndexStep:
if d.Type.IsTupleType() {
// Tuples can have different types for each element, so we look
// up the defaults based on the index key.
return d.traverseChild(s.Key.AsBigFloat().String(), path)
} else if d.Type.IsCollectionType() {
// Defaults for collection element types are stored with a blank
// key, so we disregard the index key.
return d.traverseChild("", path)
}
return nil
default:
// At time of writing there are no other path step types.
return nil
}
}
// traverseChild continues the traversal for a given child key, and mutually
// recurses with traverse.
func (d *Defaults) traverseChild(name string, path cty.Path) map[string]cty.Value {
if child, ok := d.Children[name]; ok {
return child.traverse(path[1:])
}
return nil
}