opentofu/internal/terraform/context_walk.go
Martin Atkins 83f0376673 refactoring: ApplyMoves new return type
When we originally stubbed ApplyMoves we didn't know yet how exactly we'd
be using the result, so we made it a double-indexed map allowing looking
up moves in both directions.

However, in practice we only actually need to look up old addresses by new
addresses, and so this commit first removes the double indexing so that
each move is only represented by one element in the map.

We also need to describe situations where a move was blocked, because in
a future commit we'll generate some warnings in those cases. Therefore
ApplyMoves now returns a MoveResults object which contains both a map of
changes and a map of blocks. The map of blocks isn't used yet as of this
commit, but we'll use it in a later commit to produce warnings within
the "terraform" package.
2021-09-22 09:01:10 -07:00

114 lines
3.7 KiB
Go

package terraform
import (
"log"
"github.com/hashicorp/terraform/internal/configs"
"github.com/hashicorp/terraform/internal/instances"
"github.com/hashicorp/terraform/internal/plans"
"github.com/hashicorp/terraform/internal/refactoring"
"github.com/hashicorp/terraform/internal/states"
"github.com/hashicorp/terraform/internal/tfdiags"
)
// graphWalkOpts captures some transient values we use (and possibly mutate)
// during a graph walk.
//
// The way these options get used unfortunately varies between the different
// walkOperation types. This is a historical design wart that dates back to
// us using the same graph structure for all operations; hopefully we'll
// make the necessary differences between the walk types more explicit someday.
type graphWalkOpts struct {
InputState *states.State
Changes *plans.Changes
Config *configs.Config
RootVariableValues InputValues
MoveResults refactoring.MoveResults
}
func (c *Context) walk(graph *Graph, operation walkOperation, opts *graphWalkOpts) (*ContextGraphWalker, tfdiags.Diagnostics) {
log.Printf("[DEBUG] Starting graph walk: %s", operation.String())
walker := c.graphWalker(operation, opts)
// Watch for a stop so we can call the provider Stop() API.
watchStop, watchWait := c.watchStop(walker)
// Walk the real graph, this will block until it completes
diags := graph.Walk(walker)
// Close the channel so the watcher stops, and wait for it to return.
close(watchStop)
<-watchWait
return walker, diags
}
func (c *Context) graphWalker(operation walkOperation, opts *graphWalkOpts) *ContextGraphWalker {
var state *states.SyncState
var refreshState *states.SyncState
var prevRunState *states.SyncState
// NOTE: None of the SyncState objects must directly wrap opts.InputState,
// because we use those to mutate the state object and opts.InputState
// belongs to our caller and thus we must treat it as immutable.
//
// To account for that, most of our SyncState values created below end up
// wrapping a _deep copy_ of opts.InputState instead.
inputState := opts.InputState
if inputState == nil {
// Lots of callers use nil to represent the "empty" case where we've
// not run Apply yet, so we tolerate that.
inputState = states.NewState()
}
switch operation {
case walkValidate:
// validate should not use any state
state = states.NewState().SyncWrapper()
// validate currently uses the plan graph, so we have to populate the
// refreshState and the prevRunState.
refreshState = states.NewState().SyncWrapper()
prevRunState = states.NewState().SyncWrapper()
case walkPlan, walkPlanDestroy:
state = inputState.DeepCopy().SyncWrapper()
refreshState = inputState.DeepCopy().SyncWrapper()
prevRunState = inputState.DeepCopy().SyncWrapper()
default:
state = inputState.DeepCopy().SyncWrapper()
// Only plan-like walks use refreshState and prevRunState
}
changes := opts.Changes
if changes == nil {
// Several of our non-plan walks end up sharing codepaths with the
// plan walk and thus expect to generate planned changes even though
// we don't care about them. To avoid those crashing, we'll just
// insert a placeholder changes object which'll get discarded
// afterwards.
changes = plans.NewChanges()
}
if opts.Config == nil {
panic("Context.graphWalker call without Config")
}
return &ContextGraphWalker{
Context: c,
State: state,
Config: opts.Config,
RefreshState: refreshState,
PrevRunState: prevRunState,
Changes: changes.SyncWrapper(),
InstanceExpander: instances.NewExpander(),
MoveResults: opts.MoveResults,
Operation: operation,
StopContext: c.runContext,
RootVariableValues: opts.RootVariableValues,
}
}