opentofu/configs/config.go
Alisdair McDiarmid 18f9ea53b9 command: Providers schema shows required_providers
The providers schema command is using the Config.ProviderTypes method,
which had not been kept up to date with the changes to provider
requirements detection made in Config.ProviderRequirements. This
resulted in any currently-unused providers being omitted from the
output.

This commit changes the ProviderTypes method to use the same underlying
logic as ProviderRequirements, which ensures that `required_providers`
blocks are taken into account.

Includes an integration test case to verify that this fixes the provider
schemas command bug.
2020-09-22 10:28:32 -04:00

395 lines
14 KiB
Go

package configs
import (
"fmt"
"sort"
version "github.com/hashicorp/go-version"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/terraform/addrs"
"github.com/hashicorp/terraform/internal/getproviders"
)
// A Config is a node in the tree of modules within a configuration.
//
// The module tree is constructed by following ModuleCall instances recursively
// through the root module transitively into descendent modules.
//
// A module tree described in *this* package represents the static tree
// represented by configuration. During evaluation a static ModuleNode may
// expand into zero or more module instances depending on the use of count and
// for_each configuration attributes within each call.
type Config struct {
// RootModule points to the Config for the root module within the same
// module tree as this module. If this module _is_ the root module then
// this is self-referential.
Root *Config
// ParentModule points to the Config for the module that directly calls
// this module. If this is the root module then this field is nil.
Parent *Config
// Path is a sequence of module logical names that traverse from the root
// module to this config. Path is empty for the root module.
//
// This should only be used to display paths to the end-user in rare cases
// where we are talking about the static module tree, before module calls
// have been resolved. In most cases, an addrs.ModuleInstance describing
// a node in the dynamic module tree is better, since it will then include
// any keys resulting from evaluating "count" and "for_each" arguments.
Path addrs.Module
// ChildModules points to the Config for each of the direct child modules
// called from this module. The keys in this map match the keys in
// Module.ModuleCalls.
Children map[string]*Config
// Module points to the object describing the configuration for the
// various elements (variables, resources, etc) defined by this module.
Module *Module
// CallRange is the source range for the header of the module block that
// requested this module.
//
// This field is meaningless for the root module, where its contents are undefined.
CallRange hcl.Range
// SourceAddr is the source address that the referenced module was requested
// from, as specified in configuration.
//
// This field is meaningless for the root module, where its contents are undefined.
SourceAddr string
// SourceAddrRange is the location in the configuration source where the
// SourceAddr value was set, for use in diagnostic messages.
//
// This field is meaningless for the root module, where its contents are undefined.
SourceAddrRange hcl.Range
// Version is the specific version that was selected for this module,
// based on version constraints given in configuration.
//
// This field is nil if the module was loaded from a non-registry source,
// since versions are not supported for other sources.
//
// This field is meaningless for the root module, where it will always
// be nil.
Version *version.Version
}
// ModuleRequirements represents the provider requirements for an individual
// module, along with references to any child modules. This is used to
// determine which modules require which providers.
type ModuleRequirements struct {
Name string
SourceAddr string
SourceDir string
Requirements getproviders.Requirements
Children map[string]*ModuleRequirements
}
// NewEmptyConfig constructs a single-node configuration tree with an empty
// root module. This is generally a pretty useless thing to do, so most callers
// should instead use BuildConfig.
func NewEmptyConfig() *Config {
ret := &Config{}
ret.Root = ret
ret.Children = make(map[string]*Config)
ret.Module = &Module{}
return ret
}
// Depth returns the number of "hops" the receiver is from the root of its
// module tree, with the root module having a depth of zero.
func (c *Config) Depth() int {
ret := 0
this := c
for this.Parent != nil {
ret++
this = this.Parent
}
return ret
}
// DeepEach calls the given function once for each module in the tree, starting
// with the receiver.
//
// A parent is always called before its children and children of a particular
// node are visited in lexicographic order by their names.
func (c *Config) DeepEach(cb func(c *Config)) {
cb(c)
names := make([]string, 0, len(c.Children))
for name := range c.Children {
names = append(names, name)
}
for _, name := range names {
c.Children[name].DeepEach(cb)
}
}
// AllModules returns a slice of all the receiver and all of its descendent
// nodes in the module tree, in the same order they would be visited by
// DeepEach.
func (c *Config) AllModules() []*Config {
var ret []*Config
c.DeepEach(func(c *Config) {
ret = append(ret, c)
})
return ret
}
// Descendent returns the descendent config that has the given path beneath
// the receiver, or nil if there is no such module.
//
// The path traverses the static module tree, prior to any expansion to handle
// count and for_each arguments.
//
// An empty path will just return the receiver, and is therefore pointless.
func (c *Config) Descendent(path addrs.Module) *Config {
current := c
for _, name := range path {
current = current.Children[name]
if current == nil {
return nil
}
}
return current
}
// DescendentForInstance is like Descendent except that it accepts a path
// to a particular module instance in the dynamic module graph, returning
// the node from the static module graph that corresponds to it.
//
// All instances created by a particular module call share the same
// configuration, so the keys within the given path are disregarded.
func (c *Config) DescendentForInstance(path addrs.ModuleInstance) *Config {
current := c
for _, step := range path {
current = current.Children[step.Name]
if current == nil {
return nil
}
}
return current
}
// ProviderRequirements searches the full tree of modules under the receiver
// for both explicit and implicit dependencies on providers.
//
// The result is a full manifest of all of the providers that must be available
// in order to work with the receiving configuration.
//
// If the returned diagnostics includes errors then the resulting Requirements
// may be incomplete.
func (c *Config) ProviderRequirements() (getproviders.Requirements, hcl.Diagnostics) {
reqs := make(getproviders.Requirements)
diags := c.addProviderRequirements(reqs, true)
return reqs, diags
}
// ProviderRequirementsByModule searches the full tree of modules under the
// receiver for both explicit and implicit dependencies on providers,
// constructing a tree where the requirements are broken out by module.
//
// If the returned diagnostics includes errors then the resulting Requirements
// may be incomplete.
func (c *Config) ProviderRequirementsByModule() (*ModuleRequirements, hcl.Diagnostics) {
reqs := make(getproviders.Requirements)
diags := c.addProviderRequirements(reqs, false)
children := make(map[string]*ModuleRequirements)
for name, child := range c.Children {
childReqs, childDiags := child.ProviderRequirementsByModule()
childReqs.Name = name
children[name] = childReqs
diags = append(diags, childDiags...)
}
ret := &ModuleRequirements{
SourceAddr: c.SourceAddr,
SourceDir: c.Module.SourceDir,
Requirements: reqs,
Children: children,
}
return ret, diags
}
// addProviderRequirements is the main part of the ProviderRequirements
// implementation, gradually mutating a shared requirements object to
// eventually return. If the recurse argument is true, the requirements will
// include all descendant modules; otherwise, only the specified module.
func (c *Config) addProviderRequirements(reqs getproviders.Requirements, recurse bool) hcl.Diagnostics {
var diags hcl.Diagnostics
// First we'll deal with the requirements directly in _our_ module...
if c.Module.ProviderRequirements != nil {
for _, providerReqs := range c.Module.ProviderRequirements.RequiredProviders {
fqn := providerReqs.Type
if _, ok := reqs[fqn]; !ok {
// We'll at least have an unconstrained dependency then, but might
// add to this in the loop below.
reqs[fqn] = nil
}
// The model of version constraints in this package is still the
// old one using a different upstream module to represent versions,
// so we'll need to shim that out here for now. The two parsers
// don't exactly agree in practice 🙄 so this might produce new errors.
// TODO: Use the new parser throughout this package so we can get the
// better error messages it produces in more situations.
constraints, err := getproviders.ParseVersionConstraints(providerReqs.Requirement.Required.String())
if err != nil {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid version constraint",
// The errors returned by ParseVersionConstraint already include
// the section of input that was incorrect, so we don't need to
// include that here.
Detail: fmt.Sprintf("Incorrect version constraint syntax: %s.", err.Error()),
Subject: providerReqs.Requirement.DeclRange.Ptr(),
})
}
reqs[fqn] = append(reqs[fqn], constraints...)
}
}
// Each resource in the configuration creates an *implicit* provider
// dependency, though we'll only record it if there isn't already
// an explicit dependency on the same provider.
for _, rc := range c.Module.ManagedResources {
fqn := rc.Provider
if _, exists := reqs[fqn]; exists {
// Explicit dependency already present
continue
}
reqs[fqn] = nil
}
for _, rc := range c.Module.DataResources {
fqn := rc.Provider
if _, exists := reqs[fqn]; exists {
// Explicit dependency already present
continue
}
reqs[fqn] = nil
}
// "provider" block can also contain version constraints
for _, provider := range c.Module.ProviderConfigs {
fqn := c.Module.ProviderForLocalConfig(addrs.LocalProviderConfig{LocalName: provider.Name})
if _, ok := reqs[fqn]; !ok {
// We'll at least have an unconstrained dependency then, but might
// add to this in the loop below.
reqs[fqn] = nil
}
if provider.Version.Required != nil {
// The model of version constraints in this package is still the
// old one using a different upstream module to represent versions,
// so we'll need to shim that out here for now. The two parsers
// don't exactly agree in practice 🙄 so this might produce new errors.
// TODO: Use the new parser throughout this package so we can get the
// better error messages it produces in more situations.
constraints, err := getproviders.ParseVersionConstraints(provider.Version.Required.String())
if err != nil {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid version constraint",
// The errors returned by ParseVersionConstraint already include
// the section of input that was incorrect, so we don't need to
// include that here.
Detail: fmt.Sprintf("Incorrect version constraint syntax: %s.", err.Error()),
Subject: provider.Version.DeclRange.Ptr(),
})
}
reqs[fqn] = append(reqs[fqn], constraints...)
}
}
if recurse {
for _, childConfig := range c.Children {
moreDiags := childConfig.addProviderRequirements(reqs, true)
diags = append(diags, moreDiags...)
}
}
return diags
}
// ProviderTypes returns the FQNs of each distinct provider type referenced
// in the receiving configuration.
//
// This is a helper for easily determining which provider types are required
// to fully interpret the configuration, though it does not include version
// information and so callers are expected to have already dealt with
// provider version selection in an earlier step and have identified suitable
// versions for each provider.
func (c *Config) ProviderTypes() []addrs.Provider {
// Ignore diagnostics here because they relate to version constraints
reqs, _ := c.ProviderRequirements()
ret := make([]addrs.Provider, 0, len(reqs))
for k := range reqs {
ret = append(ret, k)
}
sort.Slice(ret, func(i, j int) bool {
return ret[i].String() < ret[j].String()
})
return ret
}
// ResolveAbsProviderAddr returns the AbsProviderConfig represented by the given
// ProviderConfig address, which must not be nil or this method will panic.
//
// If the given address is already an AbsProviderConfig then this method returns
// it verbatim, and will always succeed. If it's a LocalProviderConfig then
// it will consult the local-to-FQN mapping table for the given module
// to find the absolute address corresponding to the given local one.
//
// The module address to resolve local addresses in must be given in the second
// argument, and must refer to a module that exists under the receiver or
// else this method will panic.
func (c *Config) ResolveAbsProviderAddr(addr addrs.ProviderConfig, inModule addrs.Module) addrs.AbsProviderConfig {
switch addr := addr.(type) {
case addrs.AbsProviderConfig:
return addr
case addrs.LocalProviderConfig:
// Find the descendent Config that contains the module that this
// local config belongs to.
mc := c.Descendent(inModule)
if mc == nil {
panic(fmt.Sprintf("ResolveAbsProviderAddr with non-existent module %s", inModule.String()))
}
var provider addrs.Provider
if providerReq, exists := c.Module.ProviderRequirements.RequiredProviders[addr.LocalName]; exists {
provider = providerReq.Type
} else {
provider = addrs.ImpliedProviderForUnqualifiedType(addr.LocalName)
}
return addrs.AbsProviderConfig{
Module: inModule,
Provider: provider,
Alias: addr.Alias,
}
default:
panic(fmt.Sprintf("cannot ResolveAbsProviderAddr(%v, ...)", addr))
}
}
// ProviderForConfigAddr returns the FQN for a given addrs.ProviderConfig, first
// by checking for the provider in module.ProviderRequirements and falling
// back to addrs.NewDefaultProvider if it is not found.
func (c *Config) ProviderForConfigAddr(addr addrs.LocalProviderConfig) addrs.Provider {
if provider, exists := c.Module.ProviderRequirements.RequiredProviders[addr.LocalName]; exists {
return provider.Type
}
return c.ResolveAbsProviderAddr(addr, addrs.RootModule).Provider
}