opentofu/internal/terraform/transform_destroy_cbd.go
Martin Atkins 36d0a50427 Move terraform/ to internal/terraform/
This is part of a general effort to move all of Terraform's non-library
package surface under internal in order to reinforce that these are for
internal use within Terraform only.

If you were previously importing packages under this prefix into an
external codebase, you could pin to an earlier release tag as an interim
solution until you've make a plan to achieve the same functionality some
other way.
2021-05-17 14:09:07 -07:00

156 lines
5.1 KiB
Go

package terraform
import (
"fmt"
"log"
"github.com/hashicorp/terraform/internal/configs"
"github.com/hashicorp/terraform/internal/dag"
"github.com/hashicorp/terraform/internal/states"
)
// GraphNodeDestroyerCBD must be implemented by nodes that might be
// create-before-destroy destroyers, or might plan a create-before-destroy
// action.
type GraphNodeDestroyerCBD interface {
// CreateBeforeDestroy returns true if this node represents a node
// that is doing a CBD.
CreateBeforeDestroy() bool
// ModifyCreateBeforeDestroy is called when the CBD state of a node
// is changed dynamically. This can return an error if this isn't
// allowed.
ModifyCreateBeforeDestroy(bool) error
}
// ForcedCBDTransformer detects when a particular CBD-able graph node has
// dependencies with another that has create_before_destroy set that require
// it to be forced on, and forces it on.
//
// This must be used in the plan graph builder to ensure that
// create_before_destroy settings are properly propagated before constructing
// the planned changes. This requires that the plannable resource nodes
// implement GraphNodeDestroyerCBD.
type ForcedCBDTransformer struct {
}
func (t *ForcedCBDTransformer) Transform(g *Graph) error {
for _, v := range g.Vertices() {
dn, ok := v.(GraphNodeDestroyerCBD)
if !ok {
continue
}
if !dn.CreateBeforeDestroy() {
// If there are no CBD decendent (dependent nodes), then we
// do nothing here.
if !t.hasCBDDescendent(g, v) {
log.Printf("[TRACE] ForcedCBDTransformer: %q (%T) has no CBD descendent, so skipping", dag.VertexName(v), v)
continue
}
// If this isn't naturally a CBD node, this means that an descendent is
// and we need to auto-upgrade this node to CBD. We do this because
// a CBD node depending on non-CBD will result in cycles. To avoid this,
// we always attempt to upgrade it.
log.Printf("[TRACE] ForcedCBDTransformer: forcing create_before_destroy on for %q (%T)", dag.VertexName(v), v)
if err := dn.ModifyCreateBeforeDestroy(true); err != nil {
return fmt.Errorf(
"%s: must have create before destroy enabled because "+
"a dependent resource has CBD enabled. However, when "+
"attempting to automatically do this, an error occurred: %s",
dag.VertexName(v), err)
}
} else {
log.Printf("[TRACE] ForcedCBDTransformer: %q (%T) already has create_before_destroy set", dag.VertexName(v), v)
}
}
return nil
}
// hasCBDDescendent returns true if any descendent (node that depends on this)
// has CBD set.
func (t *ForcedCBDTransformer) hasCBDDescendent(g *Graph, v dag.Vertex) bool {
s, _ := g.Descendents(v)
if s == nil {
return true
}
for _, ov := range s {
dn, ok := ov.(GraphNodeDestroyerCBD)
if !ok {
continue
}
if dn.CreateBeforeDestroy() {
// some descendent is CreateBeforeDestroy, so we need to follow suit
log.Printf("[TRACE] ForcedCBDTransformer: %q has CBD descendent %q", dag.VertexName(v), dag.VertexName(ov))
return true
}
}
return false
}
// CBDEdgeTransformer modifies the edges of CBD nodes that went through
// the DestroyEdgeTransformer to have the right dependencies. There are
// two real tasks here:
//
// 1. With CBD, the destroy edge is inverted: the destroy depends on
// the creation.
//
// 2. A_d must depend on resources that depend on A. This is to enable
// the destroy to only happen once nodes that depend on A successfully
// update to A. Example: adding a web server updates the load balancer
// before deleting the old web server.
//
// This transformer requires that a previous transformer has already forced
// create_before_destroy on for nodes that are depended on by explicit CBD
// nodes. This is the logic in ForcedCBDTransformer, though in practice we
// will get here by recording the CBD-ness of each change in the plan during
// the plan walk and then forcing the nodes into the appropriate setting during
// DiffTransformer when building the apply graph.
type CBDEdgeTransformer struct {
// Module and State are only needed to look up dependencies in
// any way possible. Either can be nil if not availabile.
Config *configs.Config
State *states.State
// If configuration is present then Schemas is required in order to
// obtain schema information from providers and provisioners so we can
// properly resolve implicit dependencies.
Schemas *Schemas
}
func (t *CBDEdgeTransformer) Transform(g *Graph) error {
// Go through and reverse any destroy edges
for _, v := range g.Vertices() {
dn, ok := v.(GraphNodeDestroyerCBD)
if !ok {
continue
}
if _, ok = v.(GraphNodeDestroyer); !ok {
continue
}
if !dn.CreateBeforeDestroy() {
continue
}
// Find the resource edges
for _, e := range g.EdgesTo(v) {
src := e.Source()
// If source is a create node, invert the edge.
// This covers both the node's own creator, as well as reversing
// any dependants' edges.
if _, ok := src.(GraphNodeCreator); ok {
log.Printf("[TRACE] CBDEdgeTransformer: reversing edge %s -> %s", dag.VertexName(src), dag.VertexName(v))
g.RemoveEdge(e)
g.Connect(dag.BasicEdge(v, src))
}
}
}
return nil
}