opentofu/terraform/eval_validate.go
Martin Atkins 8b511524d6
Initial steps towards AbsProviderConfig/LocalProviderConfig separation (#23978)
* Introduce "Local" terminology for non-absolute provider config addresses

In a future change AbsProviderConfig and LocalProviderConfig are going to
become two entirely distinct types, rather than Abs embedding Local as
written here. This naming change is in preparation for that subsequent
work, which will also include introducing a new "ProviderConfig" type
that is an interface that AbsProviderConfig and LocalProviderConfig both
implement.

This is intended to be largely just a naming change to get started, so
we can deal with all of the messy renaming. However, this did also require
a slight change in modeling where the Resource.DefaultProviderConfig
method has become Resource.DefaultProvider returning a Provider address
directly, because this method doesn't have enough information to construct
a true and accurate LocalProviderConfig -- it would need to refer to the
configuration to know what this module is calling the provider it has
selected.

In order to leave a trail to follow for subsequent work, all of the
changes here are intended to ensure that remaining work will become
obvious via compile-time errors when all of the following changes happen:
- The concept of "legacy" provider addresses is removed from the addrs
  package, including removing addrs.NewLegacyProvider and
  addrs.Provider.LegacyString.
- addrs.AbsProviderConfig stops having addrs.LocalProviderConfig embedded
  in it and has an addrs.Provider and a string alias directly instead.
- The provider-schema-handling parts of Terraform core are updated to
  work with addrs.Provider to identify providers, rather than legacy
  strings.

In particular, there are still several codepaths here making legacy
provider address assumptions (in order to limit the scope of this change)
but I've made sure each one is doing something that relies on at least
one of the above changes not having been made yet.

* addrs: ProviderConfig interface

In a (very) few special situations in the main "terraform" package we need
to make runtime decisions about whether a provider config is absolute
or local.

We currently do that by exploiting the fact that AbsProviderConfig has
LocalProviderConfig nested inside of it and so in the local case we can
just ignore the wrapping AbsProviderConfig and use the embedded value.

In a future change we'll be moving away from that embedding and making
these two types distinct in order to represent that mapping between them
requires consulting a lookup table in the configuration, and so here we
introduce a new interface type ProviderConfig that can represent either
AbsProviderConfig or LocalProviderConfig decided dynamically at runtime.

This also includes the Config.ResolveAbsProviderAddr method that will
eventually be responsible for that local-to-absolute translation, so
that callers with access to the configuration can normalize to an
addrs.AbsProviderConfig given a non-nil addrs.ProviderConfig. That's
currently unused because existing callers are still relying on the
simplistic structural transform, but we'll switch them over in a later
commit.

* rename LocalType to LocalName

Co-authored-by: Kristin Laemmert <mildwonkey@users.noreply.github.com>
2020-01-31 08:23:07 -05:00

589 lines
17 KiB
Go

package terraform
import (
"fmt"
"log"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/terraform/addrs"
"github.com/hashicorp/terraform/configs"
"github.com/hashicorp/terraform/configs/configschema"
"github.com/hashicorp/terraform/providers"
"github.com/hashicorp/terraform/provisioners"
"github.com/hashicorp/terraform/tfdiags"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
"github.com/zclconf/go-cty/cty/gocty"
)
// EvalValidateCount is an EvalNode implementation that validates
// the count of a resource.
type EvalValidateCount struct {
Resource *configs.Resource
}
// TODO: test
func (n *EvalValidateCount) Eval(ctx EvalContext) (interface{}, error) {
var diags tfdiags.Diagnostics
var count int
var err error
val, valDiags := ctx.EvaluateExpr(n.Resource.Count, cty.Number, nil)
diags = diags.Append(valDiags)
if valDiags.HasErrors() {
goto RETURN
}
if val.IsNull() || !val.IsKnown() {
goto RETURN
}
err = gocty.FromCtyValue(val, &count)
if err != nil {
// The EvaluateExpr call above already guaranteed us a number value,
// so if we end up here then we have something that is out of range
// for an int, and the error message will include a description of
// the valid range.
rawVal := val.AsBigFloat()
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid count value",
Detail: fmt.Sprintf("The number %s is not a valid count value: %s.", rawVal, err),
Subject: n.Resource.Count.Range().Ptr(),
})
} else if count < 0 {
rawVal := val.AsBigFloat()
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid count value",
Detail: fmt.Sprintf("The number %s is not a valid count value: count must not be negative.", rawVal),
Subject: n.Resource.Count.Range().Ptr(),
})
}
RETURN:
return nil, diags.NonFatalErr()
}
// EvalValidateProvider is an EvalNode implementation that validates
// a provider configuration.
type EvalValidateProvider struct {
Addr addrs.AbsProviderConfig
Provider *providers.Interface
Config *configs.Provider
}
func (n *EvalValidateProvider) Eval(ctx EvalContext) (interface{}, error) {
var diags tfdiags.Diagnostics
provider := *n.Provider
configBody := buildProviderConfig(ctx, n.Addr, n.Config)
resp := provider.GetSchema()
diags = diags.Append(resp.Diagnostics)
if diags.HasErrors() {
return nil, diags.NonFatalErr()
}
configSchema := resp.Provider.Block
if configSchema == nil {
// Should never happen in real code, but often comes up in tests where
// mock schemas are being used that tend to be incomplete.
log.Printf("[WARN] EvalValidateProvider: no config schema is available for %s, so using empty schema", n.Addr)
configSchema = &configschema.Block{}
}
configVal, configBody, evalDiags := ctx.EvaluateBlock(configBody, configSchema, nil, EvalDataForNoInstanceKey)
diags = diags.Append(evalDiags)
if evalDiags.HasErrors() {
return nil, diags.NonFatalErr()
}
req := providers.PrepareProviderConfigRequest{
Config: configVal,
}
validateResp := provider.PrepareProviderConfig(req)
diags = diags.Append(validateResp.Diagnostics)
return nil, diags.NonFatalErr()
}
// EvalValidateProvisioner is an EvalNode implementation that validates
// the configuration of a provisioner belonging to a resource. The provisioner
// config is expected to contain the merged connection configurations.
type EvalValidateProvisioner struct {
ResourceAddr addrs.Resource
Provisioner *provisioners.Interface
Schema **configschema.Block
Config *configs.Provisioner
ResourceHasCount bool
ResourceHasForEach bool
}
func (n *EvalValidateProvisioner) Eval(ctx EvalContext) (interface{}, error) {
provisioner := *n.Provisioner
config := *n.Config
schema := *n.Schema
var diags tfdiags.Diagnostics
{
// Validate the provisioner's own config first
configVal, _, configDiags := n.evaluateBlock(ctx, config.Config, schema)
diags = diags.Append(configDiags)
if configDiags.HasErrors() {
return nil, diags.Err()
}
if configVal == cty.NilVal {
// Should never happen for a well-behaved EvaluateBlock implementation
return nil, fmt.Errorf("EvaluateBlock returned nil value")
}
req := provisioners.ValidateProvisionerConfigRequest{
Config: configVal,
}
resp := provisioner.ValidateProvisionerConfig(req)
diags = diags.Append(resp.Diagnostics)
}
{
// Now validate the connection config, which contains the merged bodies
// of the resource and provisioner connection blocks.
connDiags := n.validateConnConfig(ctx, config.Connection, n.ResourceAddr)
diags = diags.Append(connDiags)
}
return nil, diags.NonFatalErr()
}
func (n *EvalValidateProvisioner) validateConnConfig(ctx EvalContext, config *configs.Connection, self addrs.Referenceable) tfdiags.Diagnostics {
// We can't comprehensively validate the connection config since its
// final structure is decided by the communicator and we can't instantiate
// that until we have a complete instance state. However, we *can* catch
// configuration keys that are not valid for *any* communicator, catching
// typos early rather than waiting until we actually try to run one of
// the resource's provisioners.
var diags tfdiags.Diagnostics
if config == nil || config.Config == nil {
// No block to validate
return diags
}
// We evaluate here just by evaluating the block and returning any
// diagnostics we get, since evaluation alone is enough to check for
// extraneous arguments and incorrectly-typed arguments.
_, _, configDiags := n.evaluateBlock(ctx, config.Config, connectionBlockSupersetSchema)
diags = diags.Append(configDiags)
return diags
}
func (n *EvalValidateProvisioner) evaluateBlock(ctx EvalContext, body hcl.Body, schema *configschema.Block) (cty.Value, hcl.Body, tfdiags.Diagnostics) {
keyData := EvalDataForNoInstanceKey
selfAddr := n.ResourceAddr.Instance(addrs.NoKey)
if n.ResourceHasCount {
// For a resource that has count, we allow count.index but don't
// know at this stage what it will return.
keyData = InstanceKeyEvalData{
CountIndex: cty.UnknownVal(cty.Number),
}
// "self" can't point to an unknown key, but we'll force it to be
// key 0 here, which should return an unknown value of the
// expected type since none of these elements are known at this
// point anyway.
selfAddr = n.ResourceAddr.Instance(addrs.IntKey(0))
} else if n.ResourceHasForEach {
// For a resource that has for_each, we allow each.value and each.key
// but don't know at this stage what it will return.
keyData = InstanceKeyEvalData{
EachKey: cty.UnknownVal(cty.String),
EachValue: cty.DynamicVal,
}
// "self" can't point to an unknown key, but we'll force it to be
// key "" here, which should return an unknown value of the
// expected type since none of these elements are known at
// this point anyway.
selfAddr = n.ResourceAddr.Instance(addrs.StringKey(""))
}
return ctx.EvaluateBlock(body, schema, selfAddr, keyData)
}
// connectionBlockSupersetSchema is a schema representing the superset of all
// possible arguments for "connection" blocks across all supported connection
// types.
//
// This currently lives here because we've not yet updated our communicator
// subsystem to be aware of schema itself. Once that is done, we can remove
// this and use a type-specific schema from the communicator to validate
// exactly what is expected for a given connection type.
var connectionBlockSupersetSchema = &configschema.Block{
Attributes: map[string]*configschema.Attribute{
// NOTE: "type" is not included here because it's treated special
// by the config loader and stored away in a separate field.
// Common attributes for both connection types
"host": {
Type: cty.String,
Required: true,
},
"type": {
Type: cty.String,
Optional: true,
},
"user": {
Type: cty.String,
Optional: true,
},
"password": {
Type: cty.String,
Optional: true,
},
"port": {
Type: cty.String,
Optional: true,
},
"timeout": {
Type: cty.String,
Optional: true,
},
"script_path": {
Type: cty.String,
Optional: true,
},
// For type=ssh only (enforced in ssh communicator)
"private_key": {
Type: cty.String,
Optional: true,
},
"certificate": {
Type: cty.String,
Optional: true,
},
"host_key": {
Type: cty.String,
Optional: true,
},
"agent": {
Type: cty.Bool,
Optional: true,
},
"agent_identity": {
Type: cty.String,
Optional: true,
},
"bastion_host": {
Type: cty.String,
Optional: true,
},
"bastion_host_key": {
Type: cty.String,
Optional: true,
},
"bastion_port": {
Type: cty.Number,
Optional: true,
},
"bastion_user": {
Type: cty.String,
Optional: true,
},
"bastion_password": {
Type: cty.String,
Optional: true,
},
"bastion_private_key": {
Type: cty.String,
Optional: true,
},
"bastion_certificate": {
Type: cty.String,
Optional: true,
},
// For type=winrm only (enforced in winrm communicator)
"https": {
Type: cty.Bool,
Optional: true,
},
"insecure": {
Type: cty.Bool,
Optional: true,
},
"cacert": {
Type: cty.String,
Optional: true,
},
"use_ntlm": {
Type: cty.Bool,
Optional: true,
},
},
}
// connectionBlockSupersetSchema is a schema representing the superset of all
// possible arguments for "connection" blocks across all supported connection
// types.
//
// This currently lives here because we've not yet updated our communicator
// subsystem to be aware of schema itself. It's exported only for use in the
// configs/configupgrade package and should not be used from anywhere else.
// The caller may not modify any part of the returned schema data structure.
func ConnectionBlockSupersetSchema() *configschema.Block {
return connectionBlockSupersetSchema
}
// EvalValidateResource is an EvalNode implementation that validates
// the configuration of a resource.
type EvalValidateResource struct {
Addr addrs.Resource
Provider *providers.Interface
ProviderSchema **ProviderSchema
Config *configs.Resource
// IgnoreWarnings means that warnings will not be passed through. This allows
// "just-in-time" passes of validation to continue execution through warnings.
IgnoreWarnings bool
// ConfigVal, if non-nil, will be updated with the value resulting from
// evaluating the given configuration body. Since validation is performed
// very early, this value is likely to contain lots of unknown values,
// but its type will conform to the schema of the resource type associated
// with the resource instance being validated.
ConfigVal *cty.Value
}
func (n *EvalValidateResource) Eval(ctx EvalContext) (interface{}, error) {
if n.ProviderSchema == nil || *n.ProviderSchema == nil {
return nil, fmt.Errorf("EvalValidateResource has nil schema for %s", n.Addr)
}
var diags tfdiags.Diagnostics
provider := *n.Provider
cfg := *n.Config
schema := *n.ProviderSchema
mode := cfg.Mode
keyData := EvalDataForNoInstanceKey
if n.Config.Count != nil {
// If the config block has count, we'll evaluate with an unknown
// number as count.index so we can still type check even though
// we won't expand count until the plan phase.
keyData = InstanceKeyEvalData{
CountIndex: cty.UnknownVal(cty.Number),
}
// Basic type-checking of the count argument. More complete validation
// of this will happen when we DynamicExpand during the plan walk.
countDiags := n.validateCount(ctx, n.Config.Count)
diags = diags.Append(countDiags)
}
if n.Config.ForEach != nil {
keyData = InstanceKeyEvalData{
EachKey: cty.UnknownVal(cty.String),
EachValue: cty.UnknownVal(cty.DynamicPseudoType),
}
// Evaluate the for_each expression here so we can expose the diagnostics
forEachDiags := n.validateForEach(ctx, n.Config.ForEach)
diags = diags.Append(forEachDiags)
}
for _, traversal := range n.Config.DependsOn {
ref, refDiags := addrs.ParseRef(traversal)
diags = diags.Append(refDiags)
if !refDiags.HasErrors() && len(ref.Remaining) != 0 {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid depends_on reference",
Detail: "References in depends_on must be to a whole object (resource, etc), not to an attribute of an object.",
Subject: ref.Remaining.SourceRange().Ptr(),
})
}
// The ref must also refer to something that exists. To test that,
// we'll just eval it and count on the fact that our evaluator will
// detect references to non-existent objects.
if !diags.HasErrors() {
scope := ctx.EvaluationScope(nil, EvalDataForNoInstanceKey)
if scope != nil { // sometimes nil in tests, due to incomplete mocks
_, refDiags = scope.EvalReference(ref, cty.DynamicPseudoType)
diags = diags.Append(refDiags)
}
}
}
// Provider entry point varies depending on resource mode, because
// managed resources and data resources are two distinct concepts
// in the provider abstraction.
switch mode {
case addrs.ManagedResourceMode:
schema, _ := schema.SchemaForResourceType(mode, cfg.Type)
if schema == nil {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid resource type",
Detail: fmt.Sprintf("The provider %s does not support resource type %q.", cfg.ProviderConfigAddr(), cfg.Type),
Subject: &cfg.TypeRange,
})
return nil, diags.Err()
}
configVal, _, valDiags := ctx.EvaluateBlock(cfg.Config, schema, nil, keyData)
diags = diags.Append(valDiags)
if valDiags.HasErrors() {
return nil, diags.Err()
}
if cfg.Managed != nil { // can be nil only in tests with poorly-configured mocks
for _, traversal := range cfg.Managed.IgnoreChanges {
moreDiags := schema.StaticValidateTraversal(traversal)
diags = diags.Append(moreDiags)
}
}
req := providers.ValidateResourceTypeConfigRequest{
TypeName: cfg.Type,
Config: configVal,
}
resp := provider.ValidateResourceTypeConfig(req)
diags = diags.Append(resp.Diagnostics.InConfigBody(cfg.Config))
if n.ConfigVal != nil {
*n.ConfigVal = configVal
}
case addrs.DataResourceMode:
schema, _ := schema.SchemaForResourceType(mode, cfg.Type)
if schema == nil {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid data source",
Detail: fmt.Sprintf("The provider %s does not support data source %q.", cfg.ProviderConfigAddr(), cfg.Type),
Subject: &cfg.TypeRange,
})
return nil, diags.Err()
}
configVal, _, valDiags := ctx.EvaluateBlock(cfg.Config, schema, nil, keyData)
diags = diags.Append(valDiags)
if valDiags.HasErrors() {
return nil, diags.Err()
}
req := providers.ValidateDataSourceConfigRequest{
TypeName: cfg.Type,
Config: configVal,
}
resp := provider.ValidateDataSourceConfig(req)
diags = diags.Append(resp.Diagnostics.InConfigBody(cfg.Config))
}
if n.IgnoreWarnings {
// If we _only_ have warnings then we'll return nil.
if diags.HasErrors() {
return nil, diags.NonFatalErr()
}
return nil, nil
} else {
// We'll return an error if there are any diagnostics at all, even if
// some of them are warnings.
return nil, diags.NonFatalErr()
}
}
func (n *EvalValidateResource) validateCount(ctx EvalContext, expr hcl.Expression) tfdiags.Diagnostics {
if expr == nil {
return nil
}
var diags tfdiags.Diagnostics
countVal, countDiags := ctx.EvaluateExpr(expr, cty.Number, nil)
diags = diags.Append(countDiags)
if diags.HasErrors() {
return diags
}
if countVal.IsNull() {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid count argument",
Detail: `The given "count" argument value is null. An integer is required.`,
Subject: expr.Range().Ptr(),
})
return diags
}
var err error
countVal, err = convert.Convert(countVal, cty.Number)
if err != nil {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid count argument",
Detail: fmt.Sprintf(`The given "count" argument value is unsuitable: %s.`, err),
Subject: expr.Range().Ptr(),
})
return diags
}
// If the value isn't known then that's the best we can do for now, but
// we'll check more thoroughly during the plan walk.
if !countVal.IsKnown() {
return diags
}
// If we _do_ know the value, then we can do a few more checks here.
var count int
err = gocty.FromCtyValue(countVal, &count)
if err != nil {
// Isn't a whole number, etc.
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid count argument",
Detail: fmt.Sprintf(`The given "count" argument value is unsuitable: %s.`, err),
Subject: expr.Range().Ptr(),
})
return diags
}
if count < 0 {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid count argument",
Detail: `The given "count" argument value is unsuitable: count cannot be negative.`,
Subject: expr.Range().Ptr(),
})
return diags
}
return diags
}
func (n *EvalValidateResource) validateForEach(ctx EvalContext, expr hcl.Expression) (diags tfdiags.Diagnostics) {
_, known, forEachDiags := evaluateResourceForEachExpressionKnown(expr, ctx)
// If the value isn't known then that's the best we can do for now, but
// we'll check more thoroughly during the plan walk
if !known {
return diags
}
if forEachDiags.HasErrors() {
diags = diags.Append(forEachDiags)
}
return diags
}